August 20, 2007
We study the intrinsic properties of attractors in the Boolean dynamics in complex network with scale-free topology, comparing with those of the so-called random Kauffman networks. We have numerically investigated the frozen and relevant nodes for each attractor, and the robustness of the attractors to the perturbation that flips the state of a single node of attractors in the relatively small network ($N=30 \sim 200$). It is shown that the rate of frozen nodes in the complex...
The Kauffman model of genetic computation highlights the importance of criticality at the border of order and chaos. But our understanding of its behavior is incomplete, and much of what we do know relies on heuristic arguments. To better understand the model and obtain more rigorous insights, we show that there are fundamental links between the critical Kauffman model and aspects of number theory. Using these connections, we prove that the number of attractors and the mean a...
May 19, 2005
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. The topologies of random Boolean networks with one input per node can be seen as graphs of random maps. We introduce an approach to investigating random maps and finding analytical results for attractors in random Boolean networks with the corresponding topology. Approximating some other non-chaotic...
December 16, 2004
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. We here derive an expression for the number of attractors in the special case of one input per node. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of attractors o...
June 23, 2006
We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical network with more than one input per node scal...
April 26, 2002
This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the...
June 22, 2007
This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.
June 30, 2005
We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical Kauffman networks (with two inputs per node) in the thermodynamic limit. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes scales with the network size N as N^{2/3}, with only N^{1/3} nonfrozen nodes having two nonfrozen inputs. We also show the probability distributions for the numbers o...
August 23, 2010
We present a computational method for finding attractors (ergodic sets of states) of Boolean networks under asynchronous update. The approach is based on a systematic removal of state transitions to render the state transition graph acyclic. In this reduced state transition graph, all attractors are fixed points that can be enumerated with little effort in most instances. This attractor set is then extended to the attractor set of the original dynamics. Our numerical tests on...
January 31, 2019
Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulation...