January 29, 2008
Boolean networks have been the object of much attention, especially since S. Kauffman proposed them in the 1960's as models for gene regulatory networks. These systems are characterized by being defined on a Boolean state space and by simultaneous updating at discrete time steps. Of particular importance for biological applications are networks in which the indegree for each variable is bounded by a fixed constant, as was stressed by Kauffman in his original papers. An impo...
January 9, 2007
We investigate Threshold Random Boolean Networks with $K = 2$ inputs per node, which are equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According to the simplest consideration these networks should be critical but it turns out that they show a rich variety of behaviors, including periodic and chaotic oscillations. The results are supported by analytical calculations and computer simulations.
April 24, 2009
We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indi...
March 10, 2010
We introduce a numerical method to study random Boolean networks with asynchronous stochas- tic update. Each node in the network of states starts with equal occupation probability and this probability distribution then evolves to a steady state. Nodes left with finite occupation probability determine the attractors and the sizes of their basins. As for synchronous update, the basin entropy grows with system size only for critical networks, where the distribution of attractor ...
November 18, 2007
Boolean networks have been the object of much attention, especially since S. Kauffman proposed them in the 1960's as models for gene regulatory networks. These systems are characterized by being defined on a Boolean state space and by simultaneous updating at discrete time steps. Of particular importance for biological applications are networks in which the indegree for each variable is bounded by a fixed constant, as was stressed by Kauffman in his original papers. An impo...
August 28, 1997
This is the first of two papers about the structure of Kauffman networks. In this paper we define the relevant elements of random networks of automata, following previous work by Flyvbjerg and Flyvbjerg and Kjaer, and we study numerically their probability distribution in the chaotic phase and on the critical line of the model. A simple approximate argument predicts that their number scales as sqrt(N) on the critical line, while it is linear with N in the chaotic phase and in...
September 28, 2020
Observing the internal state of the whole system using a small number of sensor nodes is important in analysis of complex networks. Here, we study the problem of determining the minimum number of sensor nodes to discriminate attractors under the assumption that each attractor has at most K noisy nodes. We present exact and approximation algorithms for this minimization problem. The effectiveness of the algorithms is also demonstrated by computational experiments using both sy...
July 10, 2007
We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods ...
October 31, 2005
Complexity theory as practiced by physicists and computational complexity theory as practiced by computer scientists both characterize how difficult it is to solve complex problems. Here it is shown that the parameters of a specific model can be adjusted so that the problem of finding its global energy minimum is extremely sensitive to small changes in the problem statement. This result has implications not only for studies of the physics of random systems but may also lead t...
April 26, 1993
A variant of Kauffman's model of cellular metabolism is presented. It is a randomly generated network of boolean gates, identical to Kauffman's except for a small bias in favor of boolean gates that depend on at most one input. The bias is asymptotic to 0 as the number of gates increases. Upper bounds on the time until the network reaches a state cycle and the size of the state cycle, as functions of the number of gates $n$, are derived. If the bias approaches 0 slowly enough...