November 1, 2002
Similar papers 5
February 24, 2015
Random boolean networks are a model of genetic regulatory networks that has proven able to describe experimental data in biology. They not only reproduce important phenomena in cell dynamics, but they are also extremely interesting from a theoretical viewpoint, since it is possible to tune their asymptotic behaviour from order to disorder. The usual approach characterizes network families as a whole, either by means of static or dynamic measures. We show here that a more deta...
November 2, 2005
We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen ...
October 5, 2000
We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical bifurcation, and provides an approximate description for the whole dynamics of the coupled networks. We show that these analytical predictions are in good agreement with numerical results for sufficiently large networks, and study finite-size effects in detail. Prel...
November 21, 2010
We study the properties of the distance between attractors in Random Boolean Networks, a prominent model of genetic regulatory networks. We define three distance measures, upon which attractor distance matrices are constructed and their main statistic parameters are computed. The experimental analysis shows that ordered networks have a very clustered set of attractors, while chaotic networks' attractors are scattered; critical networks show, instead, a pattern with characteri...
April 11, 2014
Boolean variables are such that they take only values on $ \mathbb{Z}_2 \cong \left\{0, 1 \right\} $. \textit{NK}-Kauffman networks are dynamical deterministic systems of $ N $ Boolean functions that depend only on $ K \leq N $ Boolean variables. They were proposed by Kauffman as a first step to understand cellular behaviour [Kauffman, S.A.; {\rm The Large Scale Structure and Dynamics of Gene Control Circuits: An Ensemble Approach}. {\it J. Theoret. Biol.} {\bf 44} (1974) 167...
October 21, 2004
We study two types of simple Boolean networks, namely two loops with a cross-link and one loop with an additional internal link. Such networks occur as relevant components of critical K=2 Kauffman networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find many of the features that have been observed in Kauffman networks. In particular, the mean number and length of cycles can diverge faster than any power law.
September 5, 2022
Stability is an important characteristic of network models that has implications for other desirable aspects such as controllability. The stability of a Boolean network depends on various factors, such as the topology of its wiring diagram and the type of the functions describing its dynamics. In this paper, we study the stability of linear Boolean networks by computing Derrida curves and quantifying the number of attractors and cycle lengths imposed by their network topologi...
November 12, 2009
Using analytic arguments, we show that dynamical attractor periods in large critical Boolean networks are power-law distributed. Our arguments are based on the method of relevant components, which focuses on the behavior of the nodes that control the dynamics of the entire network and thus determine the attractors. Assuming that the attractor period is equal to the least common multiple of the size of all relevant components, we show that the distribution in large networks is...
July 9, 2002
In this work we analyze the stochastic dynamics of the Kauffman model evolving under the influence of noise. By considering the average crossing time between two distinct trajectories, we show that different Kauffman models exhibit a similar kind of behavior, even when the structure of their basins of attraction is quite different. This can be considered as a robust property of these models. We present numerical results for the full range of noise level and obtain approximate...
April 2, 2007
In this work we consider random Boolean networks that provide a general model for genetic regulatory networks. We extend the analysis of James Lynch who was able to proof Kauffman's conjecture that in the ordered phase of random networks, the number of ineffective and freezing gates is large, where as in the disordered phase their number is small. Lynch proved the conjecture only for networks with connectivity two and non-uniform probabilities for the Boolean functions. We sh...