November 24, 2003
The extremal characteristics of random structures, including trees, graphs, and networks, are discussed. A statistical physics approach is employed in which extremal properties are obtained through suitably defined rate equations. A variety of unusual time dependences and system-size dependences for basic extremal properties are obtained.
June 10, 2002
Using a maximum entropy principle to assign a statistical weight to any graph, we introduce a model of random graphs with arbitrary degree distribution in the framework of standard statistical mechanics. We compute the free energy and the distribution of connected components. We determine the size of the percolation cluster above the percolation threshold. The conditional degree distribution on the percolation cluster is also given. We briefly present the analogous discussion...
December 27, 2024
Lecture notes of a master course given at Orsay between 2019-2024. Topics covered include Part I: One-dimensional random walks, cycle lemma and Bienaym\'e--Galton--Watson random trees. Part II: Erd\"os--R\'enyi random graphs, three proofs of the emergence of the giant component. Part III: Random recursive tree, random permutations and continuous time embedding techniques. Intended for publication.
March 7, 2007
We present a statistical mechanics approach for the description of complex networks. We first define an energy and an entropy associated to a degree distribution which have a geometrical interpretation. Next we evaluate the distribution which extremize the free energy of the network. We find two important limiting cases: a scale-free degree distribution and a finite-scale degree distribution. The size of the space of allowed simple networks given these distribution is evaluat...
January 26, 2018
Random matrix theory has played an important role in recent work on statistical network analysis. In this paper, we review recent results on regimes of concentration of random graphs around their expectation, showing that dense graphs concentrate and sparse graphs concentrate after regularization. We also review relevant network models that may be of interest to probabilists considering directions for new random matrix theory developments, and random matrix theory tools that ...
August 27, 2004
Structural properties of evolving random graphs are investigated. Treating linking as a dynamic aggregation process, rate equations for the distribution of node to node distances (paths) and of cycles are formulated and solved analytically. At the gelation point, the typical length of paths and cycles, l, scales with the component size k as l ~ k^{1/2}. Dynamic and finite-size scaling laws for the behavior at and near the gelation point are obtained. Finite-size scaling laws ...
December 8, 2008
We consider three classes of random graphs: edge random graphs, vertex random graphs, and vertex-edge random graphs. Edge random graphs are Erdos-Renyi random graphs, vertex random graphs are generalizations of geometric random graphs, and vertex-edge random graphs generalize both. The names of these three types of random graphs describe where the randomness in the models lies: in the edges, in the vertices, or in both. We show that vertex-edge random graphs, ostensibly the m...
July 13, 2000
Recent work on the structure of social networks and the internet has focussed attention on graphs with distributions of vertex degree that are significantly different from the Poisson degree distributions that have been widely studied in the past. In this paper we develop in detail the theory of random graphs with arbitrary degree distributions. In addition to simple undirected, unipartite graphs, we examine the properties of directed and bipartite graphs. Among other results...
May 25, 2004
We study the family of network models derived by requiring the expected properties of a graph ensemble to match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble. Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in classical statistical mechanics; they offer the best prediction of network properties subject to the constraints imposed by a given set of observations. We giv...
March 29, 2022
The Random Geometric Graph (RGG) is a random graph model for network data with an underlying spatial representation. Geometry endows RGGs with a rich dependence structure and often leads to desirable properties of real-world networks such as the small-world phenomenon and clustering. Originally introduced to model wireless communication networks, RGGs are now very popular with applications ranging from network user profiling to protein-protein interactions in biology. RGGs ar...