January 6, 2004
Similar papers 2
December 15, 2020
For decades, complex networks, such as social networks, biological networks, chemical networks, technological networks, have been used to study the evolution and dynamics of different kinds of complex systems. These complex systems can be better described using weighted links as binary connections do not portray the complete information of the system. All these weighted networks evolve in a different environment by following different underlying mechanics. Researchers have wo...
August 3, 2009
We develop a simple theoretical framework for the evolution of weighted networks that is consistent with a number of stylized features of real-world data. In our framework, the Barabasi-Albert model of network evolution is extended by assuming that link weights evolve according to a geometric Brownian motion. Our model is verified by means of simulations and real world trade data. We show that the model correctly predicts the intensity and growth distribution of links, the si...
May 17, 2005
We will introduce two evolving models that characterize weighted complex networks. Though the microscopic dynamics are different, these models are found to bear a similar mathematical framework, and hence exhibit some common behaviors, for example, the power-law distributions and evolution of degree, weight and strength. We also study the nontrivial clustering coefficient C and tunable degree assortativity coefficient r, depending on specific parameters. Most results are supp...
April 13, 2007
Many real systems possess accelerating statistics where the total number of edges grows faster than the network size. In this paper, we propose a simple weighted network model with accelerating growth. We derive analytical expressions for the evolutions and distributions for strength, degree, and weight, which are relevant to accelerating growth. We also find that accelerating growth determines the clustering coefficient of the networks. Interestingly, the distributions for s...
May 17, 2005
We will introduce two evolving models that characterize weighted complex networks. Though the microscopic dynamics are different, these models are found to bear a similar mathematical framework, and hence exhibit some common behaviors, for example, the power-law distributions and evolution of degree, weight and strength. We also study the nontrivial clustering coefficient C and tunable degree assortativity coefficient r, depending on specific parameters. Most results are supp...
October 4, 2004
We introduce the notion of globally updating evolution for a class of weighted networks, in which the weight of a link is characterized by the amount of data packet transport flowing through it. By noting that the packet transport over the network is determined nonlocally, this approach can explain the generic nonlinear scaling between the strength and the degree of a node. We demonstrate by a simple model that the strength-driven evolution scheme recently introduced can be g...
December 15, 2004
Different weighted scale-free networks show weights-topology correlations indicated by the non linear scaling of the node strength with node connectivity. In this paper we show that networks with and without weight-topology correlations can emerge from the same simple growth dynamics of the node connectivities and of the link weights. A weighted fitness network is introduced in which both nodes and links are assigned intrinsic fitness. This model can show a local dependence o...
May 20, 2004
We propose a model for the World Wide Web graph that couples the topological growth with the traffic's dynamical evolution. The model is based on a simple traffic-driven dynamics and generates weighted directed graphs exhibiting the statistical properties observed in the Web. In particular, the model yields a non-trivial time evolution of vertices and heavy-tail distributions for the topological and traffic properties. The generated graphs exhibit a complex architecture with ...
June 25, 2004
We discuss a newly proposed model by Barrat et al. (Phys. Rev. Lett. 92, 228701, 2004) for weighted evolving networks and suggest yet another model which can be viewed in the framework of worldwide airport network as "busy airports get busier".
January 27, 2005
Inspired by scientific collaboration networks, especially our empirical analysis of the network of econophysicists, an evolutionary model for weighted networks is proposed. Both degree-driven and weight-driven models are considered. Compared with the BA model and other evolving models with preferential attachment, there are two significant generalizations. First, besides the new vertex added in at every time step, old vertices can also attempt to build up new links, or to rec...