January 6, 2004
Similar papers 3
August 19, 2014
Complex network theory has been used to study complex systems. However, many real-life systems involve multiple kinds of objects . They can't be described by simple graphs. In order to provide complete information of these systems, we extend the concept of evolving models of complex networks to hypernetworks. In this work, we firstly propose a non-uniform hypernetwork model with attractiveness, and obtain the stationary average hyperdegree distribution of the non-uniform hype...
August 17, 2011
We propose a natural model of evolving weighted networks in which new links are not necessarily connected to new nodes. The model allows a newly added link to connect directly two nodes already present in the network. This is plausible in modeling many real-world networks. Such a link is called an inner link, while a link connected to a new node is called an outer link. In view of interrelations between inner and outer links, we investigate power-laws for the strength, degree...
November 6, 2023
Although the origin of the fat-tail characteristic of the degree distribution in complex networks has been extensively researched, the underlying cause of the degree distribution characteristic across the complete range of degrees remains obscure. Here, we propose an evolution model that incorporates only two factors: the node's weight, reflecting its innate attractiveness (nature), and the node's degree, reflecting the external influences (nurture). The proposed model provid...
June 8, 2001
We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number ...
August 26, 2004
We review the main tools which allow for the statistical characterization of weighted networks. We then present two case studies, the airline connection network and the scientific collaboration network, which are representative of critical infrastructures and social systems, respectively. The main empirical results are (i) the broad distributions of various quantities and (ii) the existence of weight-topology correlations. These measurements show that weights are relevant and...
May 5, 2004
Scale-free (SF) networks and small world networks have been found to occur in very diverse contexts. It is this striking universality which makes one look for widely applicable mechanisms which lead to the formation of such networks. In this letter we propose a new mechanism for the construction of SF networks: Evolving networks as interaction networks of systems which are distinguished by their stability if perturbed out of equilibrium. Stability is measured by the largest r...
May 17, 2005
In most networks, the connection between a pair of nodes is the result of their mutual affinity and attachment. In this letter, we will propose a Mutual Attraction Model to characterize weighted evolving networks. By introducing the initial attractiveness $A$ and the general mechanism of mutual attraction (controlled by parameter $m$), the model can naturally reproduce scale-free distributions of degree, weight and strength, as found in many real systems. Simulation results a...
August 7, 2007
Topology and weights are closely related in weighted complex networks and this is reflected in their modular structure. We present a simple network model where the weights are generated dynamically and they shape the developing topology. By tuning a model parameter governing the importance of weights, the resulting networks undergo a gradual structural transition from a module free topology to one with communities. The model also reproduces many features of large social netwo...
June 16, 2004
In this work we study a simple evolutionary model of bipartite networks which its evolution is based on the duplication of nodes. Using analytical results along with numerical simulation of the model, we show that the above evolutionary model results in weighted scale free networks. Indeed we find that in the one mode picture we have weighted networks with scale free distributions for interesting quantities like the weights, the degrees and the weighted degrees of the nodes a...
April 23, 2007
We propose a geometric growth model for weighted scale-free networks, which is controlled by two tunable parameters. We derive exactly the main characteristics of the networks, which are partially determined by the parameters. Analytical results indicate that the resulting networks have power-law distributions of degree, strength, weight and betweenness, a scale-free behavior for degree correlations, logarithmic small average path length and diameter with network size. The ob...