January 30, 2004
Similar papers 4
February 12, 2002
The random graph of Erdos and Renyi is one of the oldest and best studied models of a network, and possesses the considerable advantage of being exactly solvable for many of its average properties. However, as a model of real-world networks such as the Internet, social networks or biological networks it leaves a lot to be desired. In particular, it differs from real networks in two crucial ways: it lacks network clustering or transitivity, and it has an unrealistic Poissonian...
June 8, 2001
We review the recent fast progress in statistical physics of evolving networks. Interest has focused mainly on the structural properties of random complex networks in communications, biology, social sciences and economics. A number of giant artificial networks of such a kind came into existence recently. This opens a wide field for the study of their topology, evolution, and complex processes occurring in them. Such networks possess a rich set of scaling properties. A number ...
September 8, 2014
The theory of random graphs goes back to the late 1950s when Paul Erd\H{o}s and Alfr\'ed R\'enyi introduced the Erd\H{o}s-R\'enyi random graph. Since then many models have been developed, and the study of random graph models has become popular for real-life network modelling such as social networks and financial networks. The aim of this overview is to review relevant random graph models for real-life network modelling. Therefore, we analyse their properties in terms of styli...
November 26, 2007
What is a complex network? How do we characterize complex networks? Which systems can be studied from a network approach? In this text, we motivate the use of complex networks to study and understand a broad panoply of systems, ranging from physics and biology to economy and sociology. Using basic tools from statistical physics, we will characterize the main types of networks found in nature. Moreover, the most recent trends in network research will be briefly discussed.
May 6, 2014
Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdos and Renyi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial type...
February 1, 2023
This article serves as an introduction to the study of networks of social systems. First, we introduce the reader to key mathematical tools to study social networks, including mathematical representations of networks and essential terminology. We describe several network properties of interest and techniques for measuring these properties. We also discuss some popular generative models of networks and see how the study of these models provides insight into the mechanisms for ...
February 6, 2005
This article addresses the degree distribution of subnetworks, namely the number of links between the nodes in each subnetwork and the remainder of the structure (cond-mat/0408076). The transformation from a subnetwork-partitioned model to a standard weighted network, as well as its inverse, are formalized. Such concepts are then considered in order to obtain scale free subnetworks through design or through a dynamics of node exchange. While the former approach allows the imm...
July 24, 2007
We introduce and study a class of exchangeable random graph ensembles. They can be used as statistical null models for empirical networks, and as a tool for theoretical investigations. We provide general theorems that carachterize the degree distribution of the ensemble graphs, together with some features that are important for applications, such as subgraph distributions and kernel of the adjacency matrix. These results are used to compare to other models of simple and compl...
October 26, 2010
The focus of this thesis is about statistical mechanics on heterogeneous random graphs, i.e. how this heterogeneity affects the cooperative behavior of model systems. It is not intended as a review on it, rather it is showed how this question emerges naturally and can give useful insights to specific instances. The first chapter is about the statistical mechanics of congestion in queuing networks. The second is devoted to the study of the glassy dynamics of facilitated spin m...
October 10, 2011
We consider a large class of exponential random graph models and prove the existence of a region of parameter space corresponding to multipartite structure, separated by a phase transition from a region of disordered graphs.