February 8, 2004
Similar papers 3
August 29, 2006
We study the splitting of a harmonically trapped atomic Bose-Einstein condensate when we continuously turn up an optical lattice (or a double-well) potential. As the lattice height is increased, quantum fluctuations of atoms are enhanced. The resulting nonequilibrium dynamics of the fragmentation process of the condensate, the loss of the phase coherence of atoms along the lattice, and the reduced atom number fluctuations in individual lattice sites are stochastically studied...
September 2, 2002
We report experimental results on the dynamics and phase evolution of Bose-Einstein condensates in 1D optical lattices. The dynamical behaviour is studied by adiabatically loading the condensate into the lattice and subsequently switching off the magnetic trap. In this case, the condensate is free to expand inside the periodic structure of the optical lattice. The phase evolution of the condensate, on the other hand, can be studied by non-adiabatically switching on the period...
January 4, 2016
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase...
April 12, 2005
We observe the formation of momentum distributions indicative of spatial period-doubling of superfluid Bose-Einstein condensates in periodically translated optical lattices. The effect is attributed to dynamic instability of the condensate wavefunction caused by modulation-induced coupling of ground and excited bands.
June 1, 2015
While kinetic energy of a massive particle generally has quadratic dependence on its momentum, a flat, dispersionless energy band is realized in crystals with specific lattice structures. Such macroscopic degeneracy causes the emergence of localized eigenstates and has been a key concept in the context of itinerant ferromagnetism. Here we report the realization of a "Lieb lattice" configuration with an optical lattice, which has a flat energy band as the first excited state. ...
October 28, 2016
We explore quantum many-body physics of a driven Bose-Einstein condensate in optical lattices. The laser field induces a gap in the generalized Bogoliubov spectrum proportional to the effective Rabi frequency. The lowest lying modes in a driven condensate are characterized by zero group velocity and non-zero current. Thus, the laser field induces roton modes, which carry interaction in a driven condensate. We show that collective excitations below the energy of the laser-indu...
July 19, 2017
We report on the out-of-equilibrium dynamics of a Bose-Einstein condensate (BEC) placed in an optical lattice whose phase is suddenly modulated. The frequency and the amplitude of modulation are chosen to ensure a negative renormalized tunneling rate. Under these conditions, staggered states are nucleated by a spontaneous four wave mixing mechanism. The nucleation time is experimentally studied as a function of the renormalized tunnel rate, the atomic density and the modulati...
May 27, 2004
The occurrence of energetic and dynamical instabilities in a Bose-Einstein condensate moving in a one-dimensional (1D) optical lattice is analyzed by means of the Gross-Pitaevskii theory. Results of full 3D calculations are compared with those of an effective 1D model, the nonpolynomial Schrodinger equation, pointing out the role played by transverse degrees of freedom. The instability thresholds are shown to be scarcely affected by transverse excitations, so that they can be...
May 2, 2005
In this Letter we report the investigation of transport and static properties of a Bose-Einstein condensate in a large-spaced optical lattice. The lattice spacing can be easily tuned starting from few micrometers by adjusting the relative angle of two partially reflective mirrors. We have performed in-situ imaging of the atoms trapped in the potential wells of a 20 micrometers-spaced lattice. For a lattice spacing of 10 micrometers we have studied the transport properties of ...
August 19, 2009
We study dynamics of a two-component Bose-Einstein condensate where the two components are coupled via an optical lattice. In particular, we focus on the dynamics as one drives the system through a critical point of a first order phase transition characterized by a jump in the internal populations. Solving the time-dependent Gross-Pitaevskii equation, we analyze; breakdown of adiabaticity, impact of non-linear atom-atom scattering, and the role of a harmonic trapping potentia...