October 12, 2009
This paper takes a critical look at the usefulness of power law models of the Internet. The twin focuses of the paper are Internet traffic and topology generation. The aim of the paper is twofold. Firstly it summarises the state of the art in power law modelling particularly giving attention to existing open research questions. Secondly it provides insight into the failings of such models and where progress needs to be made for power law research to feed through to actual imp...
July 3, 2005
The degree distribution of many biological and technological networks has been described as a power-law distribution. While the degree distribution does not capture all aspects of a network, it has often been suggested that its functional form contains important clues as to underlying evolutionary processes that have shaped the network. Generally, the functional form for the degree distribution has been determined in an ad-hoc fashion, with clear power-law like behaviour ofte...
July 15, 2007
We review briefly the concepts underlying complex systems and probability distributions. The later are often taken as the first quantitative characteristics of complex systems, allowing one to detect the possible occurrence of regularities providing a step toward defining a classification of the different levels of organization (the ``universality classes''). A rapid survey covers the Gaussian law, the power law and the stretched exponential distributions. The fascination for...
August 28, 2015
The gap between data production and user ability to access, compute and produce meaningful results calls for tools that address the challenges associated with big data volume, velocity and variety. One of the key hurdles is the inability to methodically remove expected or uninteresting elements from large data sets. This difficulty often wastes valuable researcher and computational time by expending resources on uninteresting parts of data. Social sensors, or sensors which pr...
April 14, 2007
Distributions following a power-law are an ubiquitous phenomenon. Methods for determining the exponent of a power-law tail by graphical means are often used in practice but are intrinsically unreliable. Maximum likelihood estimators for the exponent are a mathematically sound alternative to graphical methods.
October 12, 2023
Complex networks across various fields are often considered to be scale free -- a statistical property usually solely characterized by a power-law distribution of the nodes' degree $k$. However, this characterization is incomplete. In real-world networks, the distribution of the degree-degree distance $\eta$, a simple link-based metric of network connectivity similar to $k$, appears to exhibit a stronger power-law distribution than $k$. While offering an alternative character...
July 30, 2011
Degree distribution models are incredibly important tools for analyzing and understanding the structure and formation of social networks, and can help guide the design of efficient graph algorithms. In particular, the Power-law degree distribution has long been used to model the structure of online social networks, and is the basis for algorithms and heuristics in graph applications such as influence maximization and social search. Along with recent measurement results, our i...
January 9, 2018
A central claim in modern network science is that real-world networks are typically "scale free," meaning that the fraction of nodes with degree $k$ follows a power law, decaying like $k^{-\alpha}$, often with $2 < \alpha < 3$. However, empirical evidence for this belief derives from a relatively small number of real-world networks. We test the universality of scale-free structure by applying state-of-the-art statistical tools to a large corpus of nearly 1000 network data set...
July 29, 2024
Statistical laws describe regular patterns observed in diverse scientific domains, ranging from the magnitude of earthquakes (Gutenberg-Richter law) and metabolic rates in organisms (Kleiber's law), to the frequency distribution of words in texts (Zipf's and Herdan-Heaps' laws), and productivity metrics of cities (urban scaling laws). The origins of these laws, their empirical validity, and the insights they provide into underlying systems have been subjects of scientific inq...
June 14, 2006
In this paper we describe the emergence of scale-free degree distributions from statistical mechanics principles. We define an energy associated to a degree sequence as the logarithm of the number of indistinguishable simple networks it is possible to draw given the degree sequence. Keeping fixed the total number of nodes and links, we show that the energy of scale-free distribution is much higher than the energy associated to the degree sequence of regular random graphs. Thi...