January 11, 2005
This article describes a complex network model whose weights are proportional to the difference between uniformly distributed ``fitness'' values assigned to the nodes. It is shown both analytically and experimentally that the strength density (i.e. the weighted node degree) for this model, called derivative complex networks, follows a power law with exponent $\gamma<1$ if the fitness has an upper limit and $\gamma>1$ if the fitness has no upper limit but a positive lower limi...
August 7, 2020
The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log-log scale. Nevertheless, there have been criticisms of the power law, for example that a threshold needs to be pre-selected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data co...
April 15, 2024
Distinguishing power-law distributions from other heavy-tailed distributions is challenging, and this task is often further complicated by subsampling effects. In this work, we evaluate the performance of two commonly used methods for detecting power-law distributions - the maximum likelihood method of Clauset et al. and the extreme value method of Voitalov et al. - in distinguishing subsampled power laws from two other heavy-tailed distributions, the lognormal and the stretc...
August 1, 2019
This paper considers the problem of estimating a power-law degree distribution of an undirected network using sampled data. Although power-law degree distributions are ubiquitous in nature, the widely used parametric methods for estimating them (e.g. linear regression on double-logarithmic axes, maximum likelihood estimation with uniformly sampled nodes) suffer from the large variance introduced by the lack of data-points from the tail portion of the power-law degree distribu...
February 2, 2017
We investigate scaling properties of human brain functional networks in the resting-state. Analyzing network degree distributions, we statistically test whether their tails scale as power-law or not. Initial studies, based on least-squares fitting, were shown to be inadequate for precise estimation of power-law distributions. Subsequently, methods based on maximum-likelihood estimators have been proposed and applied to address this question. Nevertheless, no clear consensus h...
August 4, 2019
In the last years, researchers have realized the difficulties of fitting power-law distributions properly. These difficulties are higher in Zipf's systems, due to the discreteness of the variables and to the existence of two representations for these systems, i.e., two versions about which is the random variable to fit. The discreteness implies that a power law in one of the representations is not a power law in the other, and vice versa. We generate synthetic power laws in b...
March 30, 2002
Power law distribution seems to be an important characteristic of web graphs. Several existing web graph models generate power law graphs by adding new vertices and non-uniform edge connectivities to existing graphs. Researchers have conjectured that preferential connectivity and incremental growth are both required for the power law distribution. In this paper, we propose a different web graph model with power law distribution that does not require incremental growth. We als...
March 29, 2021
The availability of large scale streaming network data has reinforced the ubiquity of power-law distributions in observations and enabled precision measurements of the distribution parameters. The increased accuracy of these measurements allows new underlying generative network models to be explored. The preferential attachment model is a natural starting point for these models. This work adds additional model components to account for observed phenomena in the distributions....
August 17, 2012
Many man-made and natural phenomena, including the intensity of earthquakes, population of cities and size of international wars, are believed to follow power-law distributions. The accurate identification of power-law patterns has significant consequences for correctly understanding and modeling complex systems. However, statistical evidence for or against the power-law hypothesis is complicated by large fluctuations in the empirical distribution's tail, and these are worsen...
May 31, 2013
The concept of scale-free networks has been widely applied across natural and physical sciences. Many claims are made about the properties of these networks, even though the concept of scale-free is often vaguely defined. We present tools and procedures to analyse the statistical properties of networks defined by arbitrary degree distributions and other constraints. Doing so reveals the highly likely properties, and some unrecognised richness, of scale-free networks, and cast...