May 12, 2004
Similar papers 3
February 14, 2017
Here is the first part of the summary of my work on random Ising model using real-space renormalization group (RSRG), also known as a Migdal-Kadanoff one. This approximate renormalization scheme was applied to the analysis thermodynamic properties of the model, and of probabilistic properties of a pair correlator, which is a fluctuating object in disordered systems. PACS numbers: 02.50.-r, 05.20.-y, 05.70.Fh, 64.60.ae, 75.10.-b, 75.10.Hk, 87.10.+e Keywords: statistical ph...
March 28, 2003
A quantum Monte Carlo algorithm for the transverse Ising model with arbitrary short- or long-range interactions is presented. The algorithm is based on sampling the diagonal matrix elements of the power series expansion of the density matrix (stochastic series expansion), and avoids the interaction summations necessary in conventional methods. In the case of long-range interactions, the scaling of the computation time with the system size N is therefore reduced from N^2 to Nl...
February 17, 2022
We consider Ising models on the hypercube with a general interaction matrix $J$, and give a polynomial time sampling algorithm when all but $O(1)$ eigenvalues of $J$ lie in an interval of length one, a situation which occurs in many models of interest. This was previously known for the Glauber dynamics when *all* eigenvalues fit in an interval of length one; however, a single outlier can force the Glauber dynamics to mix torpidly. Our general result implies the first polynomi...
December 14, 2015
The complete framework for the $\epsilon$-machine construction of the one dimensional Ising model is presented correcting previous mistakes on the subject. The approach follows the known treatment of the Ising model as a Markov random field, where usually the local characteristic are obtained from the stochastic matrix, the problem at hand needs the inverse relation, or how to obtain the stochastic matrix from the local characteristics, which are given via the transfer matrix...
May 9, 2024
Today, the Ising model is an archetype describing collective ordering processes. And, as such, it is widely known in physics and far beyond. Less known is the fact that the thesis defended by Ernst Ising 100 years ago (in 1924) contained not only the solution of what we call now the `classical 1D Ising model' but also other problems. Some of these problems, as well as the method of their solution, are the subject of this note. In particular, we discuss the combinatorial metho...
April 13, 1993
We study the use of effective transfer matrices for the numerical computation of masses (or correlation lengths) in lattice spin models. The effective transfer matrix has a strongly reduced number of components. Its definition is motivated by a renormalization group transformation of the full model onto a 1-dimensional spin model. The matrix elements of the effective transfer matrix can be determined by Monte Carlo simulation. We show that the mass gap can be recovered exactl...
October 24, 2006
The density matrix renormalization group (DMRG) has been extended to study quantum phase transitions on random graphs of fixed connectivity. As a relevant example, we have analysed the random Ising model in a transverse field. If the couplings are random, the number of retained states remains reasonably low even for large sizes. The resulting quantum spin-glass transition has been traced down for a few disorder realizations, through the careful measurement of selected observa...
October 30, 2006
We present an efficient algorithm for calculating the properties of Ising models in two dimensions, directly in the spin basis, without the need for mapping to fermion or dimer models. The algorithm gives numerically exact results for the partition function and correlation functions at a single temperature on any planar network of N Ising spins in O(N^{3/2}) time or less. The method can handle continuous or discrete bond disorder and is especially efficient in the case of bon...
July 8, 1996
We study scaling properties of the localized eigenstates of the random dimer model in which pairs of local site energies are assigned at random in a one dimensional disordered tight-binding model. We use both the transfer matrix method and the direct diagonalization of the Hamiltonian in order to find how the localization length of a finite sample scales to the localization length of the infinite system. We derive the scaling law for the localization length and show it to be ...
July 8, 2007
We study the spectrum of two dimensional coupled arrays of continuum one-dimensional systems by wedding a density matrix renormalization group procedure to a renormalization group improved truncated spectrum approach. To illustrate the approach we study the spectrum of large arrays of coupled quantum Ising chains. We demonstrate explicitly that the method can treat the various regimes of chains, in particular the three dimensional Ising ordering transition the chains undergo ...