May 12, 2004
Similar papers 4
January 27, 2020
We obtained analytically eigenvalues of a multidimensional Ising Hamiltonian on a hypercube lattice and expressed them in terms of spin-spin interaction constants and the eigenvalues of the one-dimensional Ising Hamiltonian (the latter are well known). To do this we wrote down the multidimensional Hamiltonian eigenvectors as the Kronecker products of the eigenvectors of the one-dimensional Ising Hamiltonian. For periodic boundary conditions, it is possible to obtain exact res...
August 13, 2021
Random matrix theory allows one to deduce the eigenvalue spectrum of a large matrix given only statistical information about its elements. Such results provide insight into what factors contribute to the stability of complex dynamical systems. In this letter, we study the eigenvalue spectrum of an ensemble of random matrices with correlations between any pair of elements. To this end, we introduce an analytical method that maps the resolvent of the random matrix onto the resp...
August 10, 2020
We examine connection matrices of Ising systems with long-rang interaction on d-dimensional hypercube lattices of linear dimensions L. We express the eigenvectors of these matrices as the Kronecker products of the eigenvectors for the one-dimensional Ising system. The eigenvalues of the connection matrices are polynomials of the d-th degree of the eigenvalues for the one-dimensional system. We show that including of the long-range interaction does not remove the degeneracy of...
October 2, 2005
The critical behavior of the Ising chain with long-range ferromagnetic interactions decaying with distance $r^\alpha$, $1<\alpha<2$, is investigated using a numerically efficient transfer matrix (TM) method. Finite size approximations to the infinite chain are considered, in which both the number of spins and the number of interaction constants can be independently increased. Systems with interactions between spins up to 18 sites apart and up to 2500 spins in the chain are co...
November 29, 2002
Mean-field models of 2-spin Ising spin glasses with interaction matrices taken from ensembles which are invariant under O(N) transformations are studied. A general study shows that the nature of the spin glass transition can be deduced from the eigenvalue spectrum of the interaction matrix. A simple replica approach is derived to carry out the average over the O(N) disorder. The analytic results are confirmed by extensive Monte Carlo simulations for large system sizes and by ...
November 26, 2018
Sparse non-Hermitian random matrices arise in the study of disordered physical systems with asymmetric local interactions, and have applications ranging from neural networks to ecosystem dynamics. The spectral characteristics of these matrices provide crucial information on system stability and susceptibility, however, their study is greatly complicated by the twin challenges of a lack of symmetry and a sparse interaction structure. In this review we provide a concise and sys...
April 21, 2020
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these transitions separate a phase with nonvanishing magnetization along the ordering direction from a symmetric phase upon increasing the transverse field. We consider two paradigmatic cases, a one-dimensional long-range model with power...
March 27, 2014
We study spectral densities for systems on lattices, which, at a phase transition display, power-law spatial correlations. Constructing the spatial correlation matrix we prove that its eigenvalue density shows a power law that can be derived from the spatial correlations. In practice time series are short in the sense that they are either not stationary over long time intervals or not available over long time intervals. Also we usually do not have time series for all variable...
May 11, 2016
Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known as highly relevant, in topics ranging from ferroelectrics to quotation networks. Combining these two points leads to examine finite size random matrices. To obtain basic materials properties, the Green function associated to the matrix has to be calculated. In ord...
May 23, 2017
We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the...