ID: cond-mat/0410579

Number and length of attractors in a critical Kauffman model with connectivity one

October 22, 2004

View on ArXiv

Similar papers 2

Scaling in ordered and critical random Boolean networks

December 12, 2002

89% Match
Joshua E. S. Duke University, Durham, NC Socolar, Stuart A. Bios Group, Santa Fe, NM Kauffman
Disordered Systems and Neura...
Molecular Networks

Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides ``ordered'' from ``chaotic'' attractor dynamics. In the ordered regime, we show rigorously that the average number of relevant nodes (the ones that determine the attractor dyna...

Find SimilarView on arXiv

Attractor and Basin Entropies of Random Boolean Networks Under Asynchronous Stochastic Update

March 10, 2010

88% Match
Amer Shreim, Andrew Berdahl, Florian Greil, ... , Paczuski Maya
Statistical Mechanics
Biological Physics
Other Quantitative Biology

We introduce a numerical method to study random Boolean networks with asynchronous stochas- tic update. Each node in the network of states starts with equal occupation probability and this probability distribution then evolves to a steady state. Nodes left with finite occupation probability determine the attractors and the sizes of their basins. As for synchronous update, the basin entropy grows with system size only for critical networks, where the distribution of attractor ...

Find SimilarView on arXiv

Robustness of Attractor States in Complex Networks with Scale-free Topology

August 20, 2007

88% Match
Shu-ichi Kinoshita, Kazumoto Iguchi, Hiroaki S. Yamada
Disordered Systems and Neura...

We study the intrinsic properties of attractors in the Boolean dynamics in complex network with scale-free topology, comparing with those of the so-called random Kauffman networks. We have numerically investigated the frozen and relevant nodes for each attractor, and the robustness of the attractors to the perturbation that flips the state of a single node of attractors in the relatively small network ($N=30 \sim 200$). It is shown that the rate of frozen nodes in the complex...

Find SimilarView on arXiv

Circuits, Attractors and Reachability in Mixed-K Kauffman Networks

November 15, 2007

88% Match
K. A. Hawick, H. A. James, C. J. Scogings
Disordered Systems and Neura...

The growth in number and nature of dynamical attractors in Kauffman NK network models are still not well understood properties of these important random boolean networks. Structural circuits in the underpinning graph give insights into the number and length distribution of attractors in the NK model. We use a fast direct circuit enumeration algorithm to study the NK model and determine the growth behaviour of structural circuits. This leads to an explanation and lower bound o...

Find SimilarView on arXiv

Kauffman Boolean model in undirected scale free networks

July 13, 2007

87% Match
Piotr Fronczak, Agata Fronczak, Janusz A. Holyst
Disordered Systems and Neura...
Statistical Mechanics

We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)\sim k^{-\gamma}$. We show that in infinite scale-free networks the transition between frozen and chaotic phase occurs for $3<\gamma < 3.5$. The observation is interesting for two reasons. First, since most of critical phenomena in scale-free networks reveal their non-trivial character for $\...

Find SimilarView on arXiv

The Dynamics of Canalizing Boolean Networks

January 31, 2019

87% Match
Elijah Paul, Gleb Pogudin, ... , Laubenbacher Reinhard
Molecular Networks
Discrete Mathematics
Dynamical Systems

Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulation...

Find SimilarView on arXiv

Random Boolean Networks

June 22, 2007

87% Match
Barbara Drossel
Statistical Mechanics
Disordered Systems and Neura...

This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.

Find SimilarView on arXiv

The properties of attractors of canalyzing random Boolean networks

November 2, 2005

87% Match
U. Paul, V. Kaufman, B. Drossel
Statistical Mechanics
Disordered Systems and Neura...

We study critical random Boolean networks with two inputs per node that contain only canalyzing functions. We present a phenomenological theory that explains how a frozen core of nodes that are frozen on all attractors arises. This theory leads to an intuitive understanding of the system's dynamics as it demonstrates the analogy between standard random Boolean networks and networks with canalyzing functions only. It reproduces correctly the scaling of the number of nonfrozen ...

Find SimilarView on arXiv

Attractor period distribution for critical Boolean networks

November 12, 2009

87% Match
Florian Greil, Kevin E. Bassler
Disordered Systems and Neura...

Using analytic arguments, we show that dynamical attractor periods in large critical Boolean networks are power-law distributed. Our arguments are based on the method of relevant components, which focuses on the behavior of the nodes that control the dynamics of the entire network and thus determine the attractors. Assuming that the attractor period is equal to the least common multiple of the size of all relevant components, we show that the distribution in large networks is...

Find SimilarView on arXiv

The Modular Structure of Kauffman Networks

August 28, 1997

87% Match
U. Bastolla, G. Parisi
Disordered Systems and Neura...

This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...

Find SimilarView on arXiv