October 22, 2004
Similar papers 3
July 10, 2007
We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods ...
April 26, 2002
This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the...
October 21, 2004
We study two types of simple Boolean networks, namely two loops with a cross-link and one loop with an additional internal link. Such networks occur as relevant components of critical K=2 Kauffman networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find many of the features that have been observed in Kauffman networks. In particular, the mean number and length of cycles can diverge faster than any power law.
December 6, 2007
We show that to correctly describe the position of the critical line in the Kauffman random boolean networks one must take into account percolation phenomena underlying the process of damage spreading. For this reason, since the issue of percolation transition is much simpler in random undirected networks, than in the directed ones, we study the Kauffman model in undirected networks. We derive the mean field formula for the critical line in the giant component of these networ...
December 16, 2004
Despite their apparent simplicity, random Boolean networks display a rich variety of dynamical behaviors. Much work has been focused on the properties and abundance of attractors. We here derive an expression for the number of attractors in the special case of one input per node. Approximating some other non-chaotic networks to be of this class, we apply the analytic results to them. For this approximation, we observe a strikingly good agreement on the numbers of attractors o...
June 20, 2006
Random Boolean networks were introduced in 1969 by Kauffman as a model for gene regulation. By combining analytical arguments and efficient numerical simulations, we evaluate the properties of relevant components of critical random Boolean networks independently of update scheme. As known from previous work, the number of relevant components grows logarithmically with network size. We find that in most networks all relevant nodes with more than one relevant input sit in the s...
April 24, 2009
We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indi...
August 28, 1997
This is the first of two papers about the structure of Kauffman networks. In this paper we define the relevant elements of random networks of automata, following previous work by Flyvbjerg and Flyvbjerg and Kjaer, and we study numerically their probability distribution in the chaotic phase and on the critical line of the model. A simple approximate argument predicts that their number scales as sqrt(N) on the critical line, while it is linear with N in the chaotic phase and in...
April 27, 2005
Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predic...
January 29, 2008
Boolean networks have been the object of much attention, especially since S. Kauffman proposed them in the 1960's as models for gene regulatory networks. These systems are characterized by being defined on a Boolean state space and by simultaneous updating at discrete time steps. Of particular importance for biological applications are networks in which the indegree for each variable is bounded by a fixed constant, as was stressed by Kauffman in his original papers. An impo...