October 22, 2004
Similar papers 5
September 29, 2009
For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect ...
November 6, 2012
Critical, or scale independent, systems are so ubiquitous, that gaining theoretical insights on their nature and properties has many direct repercussions in social and natural sciences. In this report, we start from the simplest possible growth model for critical systems and deduce constraints in their growth : the well-known preferential attachment principle, and, mainly, a new law of temporal scaling. We then support our scaling law with a number of calculations and simulat...
March 7, 2012
Fixed points are fundamental states in any dynamical system. In the case of gene regulatory networks (GRNs) they correspond to stable genes profiles associated to the various cell types. We use Kauffman's approach to model GRNs with random Boolean networks (RBNs). We start this paper by proving that, if we fix the values of the source nodes (nodes with in-degree 0), the expected number of fixed points of any RBN is one (independently of the topology we choose). For finding su...
February 24, 2015
Random boolean networks are a model of genetic regulatory networks that has proven able to describe experimental data in biology. They not only reproduce important phenomena in cell dynamics, but they are also extremely interesting from a theoretical viewpoint, since it is possible to tune their asymptotic behaviour from order to disorder. The usual approach characterizes network families as a whole, either by means of static or dynamic measures. We show here that a more deta...
February 5, 2007
The information processing capacity of a complex dynamical system is reflected in the partitioning of its state space into disjoint basins of attraction, with state trajectories in each basin flowing towards their corresponding attractor. We introduce a novel network parameter, the basin entropy, as a measure of the complexity of information that such a system is capable of storing. By studying ensembles of random Boolean networks, we find that the basin entropy scales with s...
April 25, 2000
We consider a class of models describing the dynamics of $N$ Boolean variables, where the time evolution of each depends on the values of $K$ of the other variables. Previous work has considered models with dissipative dynamics. Here we consider time-reversible models, which necessarily have the property that every possible point in the state-space is an element of one and only one cycle. As in the dissipative case, when K is large, typical orbit lengths grow exponentially ...
February 29, 2012
We study the dynamics of randomly connected networks composed of binary Boolean elements and those composed of binary majority vote elements. We elucidate their differences in both sparsely and densely connected cases. The quickness of large network dynamics is usually quantified by the length of transient paths, an analytically intractable measure. For discrete-time dynamics of networks of binary elements, we address this dilemma with an alternative unified framework by usin...
July 4, 2011
Conserved dynamical systems are generally considered to be critical. We study a class of critical routing models, equivalent to random maps, which can be solved rigorously in the thermodynamic limit. The information flow is conserved for these routing models and governed by cyclic attractors. We consider two classes of information flow, Markovian routing without memory and vertex routing involving a one-step routing memory. Investigating the respective cycle length distributi...
September 5, 2022
Stability is an important characteristic of network models that has implications for other desirable aspects such as controllability. The stability of a Boolean network depends on various factors, such as the topology of its wiring diagram and the type of the functions describing its dynamics. In this paper, we study the stability of linear Boolean networks by computing Derrida curves and quantifying the number of attractors and cycle lengths imposed by their network topologi...
February 13, 2013
We study the class of cooperative Boolean networks whose only regulatory functions are COPY, binary AND, and binary OR. We prove that for all sufficiently large N and c < 2 there exist Boolean networks in this class that have an attractor of length > c^N whose basin of attraction comprises an arbitrarily large fraction of the state space. The existence of such networks contrasts with results on various other types of dynamical systems that show nongenericity or absence of non...