August 14, 2004
Centimeter scale aligned carbon nanotube arrays are grown from nanoparticle metal catalyst pads. We find the nanotubes grow both with and against the wind. A metal underlayer provides in-situ electrical contact to these long nanotubes with no post growth processing needed. Using the electrically contacted nanotubes, we study electrical transport of 0.4 cm long nanotubes. The source drain I-V curves are quantitatively described by a classical, diffusive model. Our measurements...
March 15, 2015
We presents a data-calibrated compact model of carbon nanotube (CNT) field-effect transistors (CNFETs) based on the virtual-source (VS) approach, describing the intrinsic current-voltage and charge-voltage characteristics. The features of the model include: (i) carrier VS velocity extracted from experimental devices with gate lengths down to 15 nm; (ii) carrier effective mobility and velocity depending on the CNT diameter; (iii) short channel effect such as inverse subthresho...
September 5, 2005
We measure the small signal, 1 GHz source-drain dynamical conductance of a back-gated single-walled carbon nanotube field effect transistor at both low and high dc bias voltages. At all bias voltages, the intrinsic device dynamical conductance at 1 GHz is identical to the low frequency dynamical conductance, consistent with the prediction of a cutoff frequency much higher than 1 GHz. This work represents a significant step towards a full characterization of a nanotube transis...
November 20, 2007
We present a simple and scalable technique for the fabrication of solution processed & local gated carbon nanotube field effect transistors (CNT-FETs). The approach is based on directed assembly of individual single wall carbon nanotube from dichloroethane via AC dielectrophoresis (DEP) onto pre-patterned source and drain electrodes with a local aluminum gate in the middle. Local-gated CNT-FET devices display superior performance compared to global back gate with on-off ratio...
May 21, 2002
Calculations of quantum transport in a carbon nanotube transistor show that such a device offers unique functionality. It can operate as a ballistic field-effect transistor, with excellent characteristics even when scaled to 10 nm dimensions. At larger gate voltages, channel inversion leads to resonant tunneling through an electrostatically defined nanoscale quantum dot. Thus the transistor becomes a gated resonant tunelling device, with negative differential resistance at a ...
November 28, 2011
By means of catalytic chemical vapor deposition (CCVD) in-situ grown monolayer graphene field-effect transistors (MoLGFETs) and bilayer graphene transistors (BiLGFETs) are realized directly on oxidized silicon substrate without the need to transfer graphene layers. In-situ grown MoLGFETs exhibit the expected Dirac point together with the typical low on/off-current ratios. In contrast, BiLGFETs possess unipolar p-type device characteristics with an extremely high on/off-curren...
December 15, 2011
We describe a method to fabricate clean suspended single-wall carbon nanotube (SWCNT) transistors hosting a single quantum dot ranging in length from a few 10s of nm down to $\approx$ 3 nm. We first align narrow gold bow-tie junctions on top of individual SWCNTs and suspend the devices. We then use a feedback-controlled electromigration to break the gold junctions and expose nm-sized sections of SWCNTs. We measure electron transport in these devices at low temperature and sho...
June 22, 2001
We investigate theoretically the switching characteristics of semiconducting carbon nanotubes connected to gold electrodes under an external (gate) electric field. We find that the external introduction of holes is necessary to account for the experimental observations. We identify metal-induced-gap states (MIGS) at the contacts and find that the MIGS of an undoped tube would not significantly affect the switching behavior, even for very short tube lengths. We also explore th...
July 16, 2002
We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors", in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode...
May 26, 2006
High-performance single-wall carbon nanotube field-effect transistors (SWNT-FETs) are fabricated using directed assembly and mass-produced carbon nanotubes (CNTs). These FETs exhibit operating characteristics comparable to state-of-the-art devices, and the process provides a route to large-scale functional CNT circuit assembly that circumvents problems inherent in processes relying on chemical vapor deposition (CVD). Furthermore, the integration of hydrophobic self-assembled ...