January 27, 2005
Similar papers 3
June 17, 2019
The real-time flux dynamics of up to three superconducting quantum interference devices (SQUIDs) are studied by numerically solving the time-dependent Schr\"odinger equation. The numerical results are used to scrutinize the mapping of the flux degrees of freedom onto two-level systems (the qubits) as well as the performance of the intermediate SQUID as a tunable coupling element. It is shown that the qubit representation yields a good description of the flux dynamics during q...
November 21, 2003
We present a new readout method for a superconducting flux qubit, based on the measurement of the Josephson inductance of a superconducting quantum interference device that is inductively coupled to the qubit. The intrinsic flux detection efficiency and back-action are suitable for a fast and nondestructive determination of the quantum state of the qubit, as needed for readout of multiple qubits in a quantum computer. We performed spectroscopy of a flux qubit and we measured ...
August 25, 2015
The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). Here, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of $40\,\mu$s at its flux-insensitive point. Qubit relaxation times $T_1$ across 22 qubits are consistently matched with a single...
September 13, 2011
A superconducting flux qubit is inductively coupled to a Superconducting QUantum Interference Device (SQUID) magnetometer, capacitively shunted to form a 1.294-GHz resonator. The qubit-state-dependent resonator frequency is weakly probed with a microwave signal and detected with a Microstrip SQUID Amplifier. At a mean resonator occupation $\bar{n}$ = 1.5 photons, the readout visibility is increased by a factor of 4.5 over that using a cryogenic semiconductor amplifier. As $\b...
July 4, 2022
Superconducting flux qubits are promising candidates for the physical realization of a scalable quantum processor. Indeed, these circuits may have both a small decoherence rate and a large anharmonicity. These properties enable the application of fast quantum gates with high fidelity and reduce scaling limitations due to frequency crowding. The major difficulty of flux qubits' design consists of controlling precisely their transition energy - the so-called qubit gap - while k...
July 12, 2004
Single-shot readout experiments were performed on the two lowest-energy states of a superconducting qubit with three Josephson junctions embedded in a superconducting loop. We measured the qubit state via switching current Isw of a current-biased dc-SQUID, a quantum detector surrounding the qubit loop. The qubit signals were measured in a small Isw regime of the SQUID, typically less than 100 nA, where the Isw distribution is particularly narrow. The obtained single-shot data...
June 8, 2004
We propose a scheme to implement variable coupling between two flux qubits using the screening current response of a dc Superconducting QUantum Interference Device (SQUID). The coupling strength is adjusted by the current bias applied to the SQUID and can be varied continuously from positive to negative values, allowing cancellation of the direct mutual inductance between the qubits. We show that this variable coupling scheme permits efficient realization of universal quantum...
May 13, 2020
We control transition frequency of a superconducting flux qubit coupled to a frequency-tunable resonator comprising a direct current superconducting quantum interference device (dc-SQUID) by microwave driving. The dc-SQUID mediates the coupling between microwave photons in the resonator and a flux qubit. The polarity of the frequency shift depends on the sign of the flux bias for the qubit and can be both positive and negative. The absolute value of the frequency shift become...
March 25, 2024
We describe a superconducting qubit derived from operating a properly designed fluxonium circuit in a zero magnetic field. The qubit has a frequency of about 4 GHz and the energy relaxation quality factor $Q \approx 0.7\times 10^7$, even though the dielectric loss quality factor of the circuit components is in the low $10^5$ range. The Ramsey coherence time exceeds 100 us, and the average fidelity of Clifford gates is benchmarked to $\mathcal{F} > 0.999$. These figures are li...
February 25, 2007
Controllable adiabatic evolution of a multi-qubit system can be used for adiabatic quantum computation (AQC). This evolution ends at a configuration where the Hamiltonian of the system encodes the solution of the problem to be solved. As a first steps towards realization of AQC we have investigated two, three and four flux qubit systems. These systems were characterized by making use of a radio-frequency method. We designed two-qubit systems with coupling energies up to sever...