April 19, 2023
Cells often migrate on curved surfaces inside the body, such as curved tissues, blood vessels or highly curved protrusions of other cells. Recent \textit{in-vitro} experiments provide clear evidence that motile cells are affected by the curvature of the substrate on which they migrate, preferring certain curvatures to others, termed ``curvotaxis". The origin and underlying mechanism that gives rise to this curvature sensitivity are not well understood. Here, we employ a ``min...
September 3, 2009
Eukaryotic cells and intracellular pathogens such as bacteria or viruses utilize the actin polymerization machinery to propel themselves forward. Thereby, the onset of motion and choice of direction may be the result of a spontaneous symmetry-breaking or might be triggered by external signals and preexisting asymmetries, e.g. through a previous septation in bacteria. Although very complex, a key feature of cellular motility is the ability of actin to form dense polymeric netw...
April 14, 2021
Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of activators. We include, in particular, a kinematic coupling between activator density and membrane slope which generically arises whenever the membrane has a non-vanishing normal speed. We unveil the phase diagram of the model by means of a perturbative field-theor...
May 30, 2020
Cell crawling requires the generation of intracellular forces by the cytoskeleton and their transmission to an extracellular substrate through specific adhesion molecules. Crawling cells show many features of excitable systems, such as spontaneous symmetry breaking and crawling in the absence of external cues, and periodic and propagating waves of activity. Mechanical instabilities in the active cytoskeleton network and feedback loops in the biochemical network of activators ...
July 29, 2009
Observations of single epidermal cells on flat adhesive substrates have revealed two distinct morphological and functional states, namely a non-migrating symmetric unpolarized state and a migrating asymmetric polarized state. These states are characterized by different spatial distributions and dynamics of important biochemical cell components: F-actin and myosin-II form the contractile part of the cytoskeleton, and integrin receptors in the plasma membrane connect F-actin fi...
May 6, 2015
Using numerical simulations, we characterized the behavior of an elastic membrane immersed in an active fluid. Our findings reveal a nontrivial folding and re-expansion of the membrane that is controlled by the interplay of its resistance to bending and the self-propulsion strength of the active components in solution. We show how flexible membranes tend to collapse into multi-folded states, whereas stiff membranes oscillates between an extended configuration and a singly fol...
March 14, 2022
Living cells employ excitable reaction-diffusion waves for internal cellular functions, in which curvature-inducing proteins are often involved. However, the role of their mechanochemical coupling is not well understood. Here, we report the membrane deformation induced by the excitable reaction-diffusion waves of curvature-inducing proteins and the alternation in the waves due to the deformation, using a coarse-grained simulation of tubular membranes with a modified FitzHugh-...
March 12, 2007
The cytoskeleton provides eukaryotic cells with mechanical support and helps them perform their biological functions. It is a network of semiflexible polar protein filaments and many accessory proteins that bind to these filaments, regulate their assembly, link them to organelles and continuously remodel the network. Here we review recent theoretical work that aims to describe the cytoskeleton as a polar continuum driven out of equilibrium by internal chemical reactions. This...
October 12, 2024
Cellular locomotion often involves the motion of thin, elastic filaments, such as cilia and flagella, in viscous environments. The manuscript serves as a general introduction to the topic of modelling microscale elastohydrodynamics. We briefly characterise the specific features of biological filaments that affect their propulsion modes, and discuss the theoretical framework for their description, along with selected biological and artificial examples of active systems.
November 27, 2015
For various cell types and for lamellipodial fragments on flat surfaces, externally induced and spontaneous transitions between symmetric nonmoving states and polarized migration have been observed. This behavior is indicative of bistability of the cytoskeleton dynamics. In this work, the Filament Based Lamellipodium Model (FBLM), a two-dimensional, anisotropic, two-phase continuum model for the dynamics of the actin filament network in lamellipodia, is extended by a new desc...