March 21, 2005
Similar papers 5
September 5, 2022
Stability is an important characteristic of network models that has implications for other desirable aspects such as controllability. The stability of a Boolean network depends on various factors, such as the topology of its wiring diagram and the type of the functions describing its dynamics. In this paper, we study the stability of linear Boolean networks by computing Derrida curves and quantifying the number of attractors and cycle lengths imposed by their network topologi...
January 29, 2013
We evaluate analytically and numerically the size of the frozen core and various scaling laws for critical Boolean networks that have a power-law in- and/or out-degree distribution. To this purpose, we generalize an efficient method that has previously been used for conventional random Boolean networks and for networks with power-law in-degree distributions. With this generalization, we can also deal with power-law out-degree distributions. When the power-law exponent is betw...
October 2, 2007
We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains $N$ Boolean elements each with $K$ inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of an SSN at both local and global scales, as well as sample-to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure,...
January 29, 2008
Boolean networks have been the object of much attention, especially since S. Kauffman proposed them in the 1960's as models for gene regulatory networks. These systems are characterized by being defined on a Boolean state space and by simultaneous updating at discrete time steps. Of particular importance for biological applications are networks in which the indegree for each variable is bounded by a fixed constant, as was stressed by Kauffman in his original papers. An impo...
May 2, 2008
We discuss basic features of emergent complexity in dynamical systems far from equilibrium by focusing on the network structure of their state space. We start by measuring the distributions of avalanche and transient times in Random Boolean Networks (RBNs) and in the \emph{Drosophila} polarity network by exact enumeration. A transient time is the duration of the transient from a starting state to an attractor. An avalanche is a special transient which starts as single Boolean...
April 21, 2011
We study information processing in populations of Boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes $N$, adaptive information processing drives the networks to a critical connectivity $K_{c}=2$. For finite size networks, the connectivity approaches the critica...
The Kauffman model is the archetypal model of genetic computation. It highlights the importance of criticality, at which many biological systems seem poised. In a series of advances, researchers have honed in on how the number of attractors in the critical regime grows with network size. But a definitive answer has proved elusive. We prove that, for the critical Kauffman model with connectivity one, the number of attractors grows at least, and at most, as $(2/\!\sqrt{e})^N$. ...
May 6, 2009
We investigated the properties of Boolean networks that follow a given reliable trajectory in state space. A reliable trajectory is defined as a sequence of states which is independent of the order in which the nodes are updated. We explored numerically the topology, the update functions, and the state space structure of these networks, which we constructed using a minimum number of links and the simplest update functions. We found that the clustering coefficient is larger th...
September 25, 2002
The dynamics of Boolean networks (the N-K model) with scale-free topology are studied here. The existence of a phase transition governed by the value of the scale-free exponent of the network is shown analytically by analyzing the overlap between two distinct trajectories. The phase diagram shows that the phase transition occurs for values of the scale-free exponent in the open interval (2,2.5). Since the Boolean networks under study are directed graphs, the scale-free topolo...
April 30, 2006
The co-evolution of network topology and dynamics is studied in an evolutionary Boolean network model that is a simple model of gene regulatory network. We find that a critical state emerges spontaneously resulting from interplay between topology and dynamics during the evolution. The final evolved state is shown to be independent of initial conditions. The network appears to be driven to a random Boolean network with uniform in-degree of two in the large network limit. Howev...