April 20, 2005
Similar papers 4
May 20, 2002
The influence of disorder on ultracold atomic Bose gases in quasiperiodic optical lattices is discussed in the framework of the one-dimensional Bose-Hubbard model. It is shown that simple periodic modulations of the well depths generate a rich phase diagram consisting of superfluid, Mott insulator, Bose-glass and Anderson localized phases. The detailed evolution of mean occupation numbers and number fluctuations as function of modulation amplitude and interaction strength is ...
November 12, 2004
We investigate the superfluid--Mott-insulator quantum phase transition of spin-1 bosons in an optical lattice created by pairs of counterpropagating linearly polarized laser beams, driving an $F_g=1$ to $F_e=1$ internal atomic transition. The whole parameter space of the resulting two-component Bose-Hubbard model is studied. We find that the phase transition is not always second order as in the case of spinless bosons, but can be first order in certain regions of the paramete...
March 15, 2005
Cold atom optical lattices typically simulate zero-range Hubbard models. We discuss the theoretical possibility of using excited states of optical lattices to generate extended range Hubbard models. We find that bosons confined to higher bands of optical lattices allow for a rich phase diagram, including the supersolid phase. Using Gutzwiller, mean field theory we establish the parameter regime necessary to maintain metastable states generated by an extended Bose-Hubbard mode...
March 7, 2012
In this paper we analyze the various phases exhibited by a system of ultracold bosons in a periodic optical superlattice using the mean field decoupling approximation. We investigate for a wide range of commensurate and incommensurate densities. We find the gapless superfluid phase, the gapped Mott insulator phase, and gapped insulator phases with distinct density wave orders.
January 22, 2011
We study the superfluid-Mott insulator (SF-MI) transition in an one-dimensional optical lattice system, and employ the Bose-Hubbard model in two dimension with a combined potential of an optical lattice in one direction and a confining harmonic trap in the other direction, which we refer to as the pseudo one-dimension Bose-Hubbard model. There some excited states with respect to the harmonic trap are considered. The Mott lobes shrink in the $\mu$ and $J$ directions of the $\m...
September 3, 2002
We present a study of the superfluid properties of atomic Bose gases in optical lattice potentials using the Bose-Hubbard model. To do this, we use a microscopic definition of the superfluid fraction based on the response of the system to a phase variation imposed by means of twisted boundary conditions. We compare the superfluid fraction to other physical quantities, i.e., the interference pattern after ballistic expansion, the quasi-momentum distribution, and number fluctua...
March 23, 2004
In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transition condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov appro...
January 4, 2005
We predict that a new superfluid phase, the incompressible excitonic superfluid (IESF), in the phase diagram of ultracold Bose atoms in $d>1$ dimensional optical lattices, which is caused by the spontaneous breaking of the symmetry of translation of the lattice. Within mean field theory, the critical temperature of the phase transition from this IESF to the normal fluid (NF) is calculated and the triple-critical point of the three phases is determined. We also investigate bot...
November 15, 2002
We discuss the superfluid to Mott-insulator transition of cold atoms in optical lattices recently observed by Greiner et.al. (Nature 415, 39 (2002)). The fundamental properties of both phases and their experimental signatures are discussed carefully, including the limitations of the standard Gutzwiller-approximation. It is shown that in a one-dimensional dilute Bose-gas with a strong transverse confinement (Tonks-gas), even an arbitrary weak optical lattice is able to induce ...
January 31, 2012
We develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this potential, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator (MI), density-wave (DW), and supersolid (SS) phases in the plane of the chemical potential (\mu) and on-site repulsion (U); we present phase diagrams for...