April 20, 2005
Similar papers 5
November 7, 2000
We present the zero-temperature phase diagram of bosonic atoms in an optical lattice, using two different mean-field approaches. The phase diagram consists of various insulating phases and a superfluid phase. We explore the nature of the insulating phase by calculating both the quasiparticle and quasihole dispersion relation. We also determine the parameters of our single band Bose-Hubbard model in terms of the microscopic parameters of the atoms in the optical lattice.
May 11, 2011
Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical lattices which provides a qualitative description of both superfluid and insulator states. The theory is based on a change of variables in which the boson coherent state amplitude is replaced by an effective potential which promotes phase coherence between di...
October 17, 2006
We show that a site-dependent mean-field approach captures the quantum phases of the disordered Bose-Hubbard model commonly adopted to describe ultracold bosons in random optical lattice potentials. The different phases, namely superfluid, Mott insulator, Bose-glass and -- at finite temperature -- normal fluid, are characterized by means of the superfluid and condensate fractions, and compressibility of the system. We point out that both the boundaries of the Mott lobes and t...
March 7, 2012
The Mott insulator-superfluid transition for ultracold bosonic atoms in an optical lattice has been extensively studied in the framework of the Bose-Hubbard model with two-body on-site interactions. In this paper, we analyze the additional effect of the three-body on-site interactions on this phase transition in optical lattice and the transitions between the various phases that arise in an optical superlattice. Using the mean-field theory and the density matrix renormalizati...
December 3, 2008
The experimentally observed loss of superfluidity by introducing fermions to the boson Hubbard system on an optical lattice is explained. We show that the virtual transitions of the bosons to the higher Bloch bands, coupled with the contact boson-fermion interactions of either sign, result in an effective increase of the boson on-site repulsion. If this renormalization of the on-site potential is dominant over the fermion screening of the boson interactions, the Mott insulati...
October 19, 2017
An interesting first order type phase transition between Mott lobes has been reported in Phys. Rev. Lett. 109, 135302 (2012) for a two-dimensional Bose-Hubbard model in the presence of attractive three-body interaction. We re-visit the scenario in a system of ultracold bosons in a one-dimensional optical lattice using the density matrix renormalization group method and show that an unconventional pairing of particles occurs due to the competing two-body repulsive and three-bo...
March 8, 2010
We extend the idea of quantum phase transitions of light in the photonic Bose-Hubbard model with interactions to two atomic species by a self-consistent mean field theory. The excitation of two-level atoms interacting with coherent photon fields is analyzed with a finite temperature dependence of the order parameters. Four ground states of the system are found, including an isolated Mott-insulator phase and three different superfluid phases. Like two weakly coupled supercondu...
May 3, 2002
We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high filling factors. We show that also in this multi-band situation, the long-wavelength physics is described by a single-band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero temperatures. We show that in particular for a one or ...
March 10, 2005
The phase diagram of ultracold bosons in realistic optical superlattices is addressed via second-order {\it cell} strong coupling perturbative expansions for the Bose-Hubbard model describing the system. Taking advantage of the cell partition inherent in the complex periodic modulation of a superlattice, this technique allows for the description of the unusual loophole-shaped insulator domains that may occur in the phase diagram of the system, unlike the standard perturbative...
April 18, 2003
The Bose-Hubbard Hamiltonian of spin-2 cold bosons with repulsive interaction in an optical lattice is proposed. After neglecting the hopping term, the site-independent Hamiltonian and its energy eigenvalues and eigenstates are obtained. We consider the hopping term as a perturbation to do the calculations in second order and draw the phase diagrams for different cases. The phase diagrams show that there is a phase transition from Mott insulator with integer number bosons to ...