May 17, 2005
We will introduce two evolving models that characterize weighted complex networks. Though the microscopic dynamics are different, these models are found to bear a similar mathematical framework, and hence exhibit some common behaviors, for example, the power-law distributions and evolution of degree, weight and strength. We also study the nontrivial clustering coefficient C and tunable degree assortativity coefficient r, depending on specific parameters. Most results are supported by present empirical evidences, and may provide us with a better description of the hierarchies and organizational architecture of weighted networks. Our models have been inspired by the weighted network model proposed by Alain Barrat et al. (BBV for short), and can be considered as a meaningful development of their original work.
Similar papers 1
May 17, 2005
We will introduce two evolving models that characterize weighted complex networks. Though the microscopic dynamics are different, these models are found to bear a similar mathematical framework, and hence exhibit some common behaviors, for example, the power-law distributions and evolution of degree, weight and strength. We also study the nontrivial clustering coefficient C and tunable degree assortativity coefficient r, depending on specific parameters. Most results are supp...
June 10, 2004
We present a general model for the growth of weighted networks in which the structural growth is coupled with the edges' weight dynamical evolution. The model is based on a simple weight-driven dynamics and a weights' reinforcement mechanism coupled to the local network growth. That coupling can be generalized in order to include the effect of additional randomness and non-linearities which can be present in real-world networks. The model generates weighted graphs exhibiting ...
January 6, 2004
We propose a model for the growth of weighted networks that couples the establishment of new edges and vertices and the weights' dynamical evolution. The model is based on a simple weight-driven dynamics and generates networks exhibiting the statistical properties observed in several real-world systems. In particular, the model yields a non-trivial time evolution of vertices' properties and scale-free behavior for the weight, strength and degree distributions.
July 14, 2006
Real-world networks process structured connections since they have non-trivial vertex degree correlation and clustering. Here we propose a toy model of structure formation in real-world weighted network. In our model, a network evolves by topological growth as well as by weight change. In addition, we introduce the weighted assortativity coefficient, which generalizes the assortativity coefficient of a topological network, to measure the tendency of having a high-weighted lin...
January 10, 2005
For most technical networks, the interplay of dynamics, traffic and topology is assumed crucial to their evolution. In this paper, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight and strength, as confirmed in many real networks. Particularly, depending on a parameter W that contro...
June 13, 2004
Many social, technological, biological, and economical systems are best described by weighted networks, whose properties and dynamics depend not only on their structures but also on the connection weights among their nodes. However, most existing research work on complex network models are concentrated on network structures, with connection weights among their nodes being either 1 or 0. In this paper, we propose a new weighted evolving network model. Numerical simulations ind...
September 7, 2007
We propose a synthetical weights' dynamic mechanism for weighted networks which takes into account the influences of strengths of nodes, weights of links and incoming new vertices. Strength/Weight preferential strategies are used in these weights' dynamic mechanisms, which depict the evolving strategies of many real-world networks. We give insight analysis to the synthetical weights' dynamic mechanism and study how individual weights' dynamic strategies interact and cooperate...
December 15, 2020
For decades, complex networks, such as social networks, biological networks, chemical networks, technological networks, have been used to study the evolution and dynamics of different kinds of complex systems. These complex systems can be better described using weighted links as binary connections do not portray the complete information of the system. All these weighted networks evolve in a different environment by following different underlying mechanics. Researchers have wo...
January 19, 2001
Many biological, ecological and economic systems are best described by weighted networks, as the nodes interact with each other with varying strength. However, most network models studied so far are binary, the link strength being either 0 or 1. In this paper we introduce and investigate the scaling properties of a class of models which assign weights to the links as the network evolves. The combined numerical and analytical approach indicates that asymptotically the total we...
June 25, 2004
We discuss a newly proposed model by Barrat et al. (Phys. Rev. Lett. 92, 228701, 2004) for weighted evolving networks and suggest yet another model which can be viewed in the framework of worldwide airport network as "busy airports get busier".