August 28, 1997
This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...
October 21, 2004
We study two types of simple Boolean networks, namely two loops with a cross-link and one loop with an additional internal link. Such networks occur as relevant components of critical K=2 Kauffman networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find many of the features that have been observed in Kauffman networks. In particular, the mean number and length of cycles can diverge faster than any power law.
July 10, 2007
We investigate the influence of a deterministic but non-synchronous update on Random Boolean Networks, with a focus on critical networks. Knowing that ``relevant components'' determine the number and length of attractors, we focus on such relevant components and calculate how the length and number of attractors on these components are modified by delays at one or more nodes. The main findings are that attractors decrease in number when there are more delays, and that periods ...
January 9, 2007
We investigate Threshold Random Boolean Networks with $K = 2$ inputs per node, which are equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According to the simplest consideration these networks should be critical but it turns out that they show a rich variety of behaviors, including periodic and chaotic oscillations. The results are supported by analytical calculations and computer simulations.
July 2, 2001
Random Boolean networks, the Kauffman model, are revisited by means of a novel decimation algorithm, which reduces the networks to their dynamical cores. The average size of the removed part, the stable core, grows approximately linearly with N, the number of nodes in the original networks. We show that this can be understood as the percolation of the stability signal in the network. The stability of the dynamical core is investigated and it is shown that this core lacks the ...
April 28, 2002
We develop a phenomenological theory of critical phenomena in networks with an arbitrary distribution of connections $P(k)$. The theory shows that the critical behavior depends in a crucial way on the form of $P(k)$ and differs strongly from the standard mean-field behavior. The critical behavior observed in various networks is analyzed and found to be in agreement with the theory.
September 25, 2002
The dynamics of Boolean networks (the N-K model) with scale-free topology are studied here. The existence of a phase transition governed by the value of the scale-free exponent of the network is shown analytically by analyzing the overlap between two distinct trajectories. The phase diagram shows that the phase transition occurs for values of the scale-free exponent in the open interval (2,2.5). Since the Boolean networks under study are directed graphs, the scale-free topolo...
October 19, 2001
A model of cellular metabolism due to S. Kauffman is analyzed. It consists of a network of Boolean gates randomly assembled according to a probability distribution. It is shown that the behavior of the network depends very critically on certain simple algebraic parameters of the distribution. In some cases, the analytic results support conclusions based on simulations of random Boolean networks, but in other cases, they do not.
August 5, 2020
Within the conventional statistical physics framework, we study critical phenomena in a class of configuration network models with hidden variables controlling links between pairs of nodes. We find analytical expressions for the average node degree, the expected number of edges, and the Landau and Helmholtz free energies, as a function of the temperature and number of nodes. We show that the network's temperature is a parameter that controls the average node degree in the who...
January 7, 2002
Random Threshold Networks with sparse, asymmetric connections show complex dynamical behavior similar to Random Boolean Networks, with a transition from ordered to chaotic dynamics at a critical average connectivity $K_c$. In this type of model - contrary to Boolean Networks - propagation of local perturbations (damage) depends on the in-degree of the sites. $K_c$ is determined analytically, using an annealed approximation, and the results are confirmed by numerical simulatio...