November 6, 2012
Critical, or scale independent, systems are so ubiquitous, that gaining theoretical insights on their nature and properties has many direct repercussions in social and natural sciences. In this report, we start from the simplest possible growth model for critical systems and deduce constraints in their growth : the well-known preferential attachment principle, and, mainly, a new law of temporal scaling. We then support our scaling law with a number of calculations and simulat...
The Kauffman model is the archetypal model of genetic computation. It highlights the importance of criticality, at which many biological systems seem poised. In a series of advances, researchers have honed in on how the number of attractors in the critical regime grows with network size. But a definitive answer has proved elusive. We prove that, for the critical Kauffman model with connectivity one, the number of attractors grows at least, and at most, as $(2/\!\sqrt{e})^N$. ...
July 20, 2010
We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number $b_t$ of nodes with value one, and the network sensitivity $\lambda$, and we compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 2004 101 49 17102-7], these networks have a rich phase diagram, were both the "chaotic" and frozen...
April 30, 2006
The co-evolution of network topology and dynamics is studied in an evolutionary Boolean network model that is a simple model of gene regulatory network. We find that a critical state emerges spontaneously resulting from interplay between topology and dynamics during the evolution. The final evolved state is shown to be independent of initial conditions. The network appears to be driven to a random Boolean network with uniform in-degree of two in the large network limit. Howev...
November 6, 2008
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology based on a local coupling between a dynamical order parameter and rewiring of network connectivity, with convergence towards criticality in the limit of large network size $N$. In particular, two adaptive schemes are discussed and ...
December 6, 2007
We show that to correctly describe the position of the critical line in the Kauffman random boolean networks one must take into account percolation phenomena underlying the process of damage spreading. For this reason, since the issue of percolation transition is much simpler in random undirected networks, than in the directed ones, we study the Kauffman model in undirected networks. We derive the mean field formula for the critical line in the giant component of these networ...
April 26, 2002
This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the...
April 27, 2005
Boolean Networks have been used to study numerous phenomena, including gene regulation, neural networks, social interactions, and biological evolution. Here, we propose a general method for determining the critical behavior of Boolean systems built from arbitrary ensembles of Boolean functions. In particular, we solve the critical condition for systems of units operating according to canalizing functions and present strong numerical evidence that our approach correctly predic...
January 31, 2019
Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulation...
April 1, 2010
In this paper, we address the logarithmic corrections to the leading power laws that govern thermodynamic quantities as a second-order phase transition point is approached. For phase transitions of spin systems on d-dimensional lattices, such corrections appear at some marginal values of the order parameter or space dimension. We present new scaling relations for these exponents. We also consider a spin system on a scale-free network which exhibits logarithmic corrections due...