July 14, 2005
Similar papers 5
June 22, 2013
Exploring statistics of locally connected subgraph patterns (also known as network motifs) has helped researchers better understand the structure and function of biological and online social networks (OSNs). Nowadays the massive size of some critical networks -- often stored in already overloaded relational databases -- effectively limits the rate at which nodes and edges can be explored, making it a challenge to accurately discover subgraph statistics. In this work, we propo...
July 23, 2020
We study the following problem: given an integer $k \ge 3$ and a simple graph $G$, sample a connected induced $k$-node subgraph of $G$ uniformly at random. This is a fundamental graph mining primitive with applications in social network analysis, bioinformatics, and more. Surprisingly, no efficient algorithm is known for uniform sampling; the only somewhat efficient algorithms available yield samples that are only approximately uniform, with running times that are unclear or ...
October 30, 2017
In random graph models, the degree distribution of an individual node should be distinguished from the (empirical) degree distribution of the graph that records the fractions of nodes with given degree. We introduce a general framework to explore when these two degree distributions coincide asymptotically in large homogeneous random networks. The discussion is carried under three basic statistical assumptions on the degree sequences: (i) a weak form of distributional homogene...
October 17, 2006
The simplest null models for networks, used to distinguish significant features of a particular network from {\it a priori} expected features, are random ensembles with the degree sequence fixed by the specific network of interest. These "fixed degree sequence" (FDS) ensembles are, however, famously resistant to analytic attack. In this paper we introduce ensembles with partially-fixed degree sequences (PFDS) and compare analytic results obtained for them with Monte Carlo res...
October 26, 2021
Sampling random nodes is a fundamental algorithmic primitive in the analysis of massive networks, with many modern graph mining algorithms critically relying on it. We consider the task of generating a large collection of random nodes in the network assuming limited query access (where querying a node reveals its set of neighbors). In current approaches, based on long random walks, the number of queries per sample scales linearly with the mixing time of the network, which can...
December 20, 2017
Understanding the mathematical properties of graphs underling biological systems could give hints on the evolutionary mechanisms behind these structures. In this article we perform a complete statistical analysis over thousands of graphs representing metabolic and protein-protein interaction (PPI) networks. First, we investigate the quality of fits obtained for the nodes degree distributions to power-law functions. This analysis suggests that a power-law distribution poorly d...
February 22, 2005
We address here the problem of generating random graphs uniformly from the set of simple connected graphs having a prescribed degree sequence. Our goal is to provide an algorithm designed for practical use both because of its ability to generate very large graphs (efficiency) and because it is easy to implement (simplicity). We focus on a family of heuristics for which we prove optimality conditions, and show how this optimality can be reached in practice. We then propose a d...
September 23, 2003
We present a simple model for the underlying structure of protein-protein pairwise interaction graphs that is based on the way in which proteins attach to each other in experiments such as yeast two-hybrid assays. We show that data on the interactions of human proteins lend support to this model. The frequency of the number of connections per protein under this model does not follow a power law, in contrast to the reported behaviour of data from large scale yeast two-hybrid s...
February 1, 2009
In the last decade it became apparent that a large number of the most interesting structures and phenomena of the world can be described by networks: separable elements, with connections (or interactions) between certain pairs of them. These huge networks pose exciting challenges for the mathematician. Graph Theory (the mathematical theory of networks) faces novel, unconventional problems: these very large networks (like the Internet) are never completely known, in most cas...
July 17, 2018
When the network is reconstructed, two types of errors can occur: false positive and false negative errors about the presence or absence of links. In this paper, the influence of these two errors on the vertex degree distribution is analytically analysed. Moreover, an analytic formula of the density of the biased vertex degree distribution is found. In the inverse problem, we find a reliable procedure to reconstruct analytically the density of the vertex degree distribution o...