August 18, 2005
Similar papers 2
February 15, 2002
We have studied theoretically the electron spin relaxation in semiconductor quantum dots via interaction with nuclear spins. The relaxation is shown to be determined by three processes: (i) -- the precession of the electron spin in the hyperfine field of the frozen fluctuation of the nuclear spins; (ii) -- the precession of the nuclear spins in the hyperfine field of the electron; and (iii) -- the precession of the nuclear spin in the dipole field of its nuclear neighbors. In...
December 10, 2002
We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin preces...
September 9, 2006
Hyperfine interaction of electron spins with nuclear spins, in coupled double quantum dots is studied. Results of successive electron spin measurements exhibit bunching due to correlations induced via the nuclear spins. Further nuclear spins can be purified via conditional electron spin measurements which lead to electron spin revivals in the conditional probabilities. The electron spin coherence time can be extended via conditional measurements. The results are extended to a...
September 22, 2010
Coherence of spins of electrons confined in III-V quantum dots is strongly affected by their hyperfine interaction with the nuclei. In this paper an introduction to this subject will be given. Some theoretical approaches to the problem will be outlined. Most attention will be given to the Quasi-Static Bath Approximation, to the cluster expansion theories of dephasing due to the nuclear dynamics induced by the dipolar interactions (spectral diffusion), and to the effective Ham...
December 1, 2009
We investigate hyperfine induced electron spin and entanglement dynamics in a system of two quantum dot spin qubits. We focus on the situation of zero external magnetic field and concentrate on approximation-free theoretical methods. We give an exact solution of the model for homogeneous hyperfine coupling constants (with all coupling coefficients being equal) and varying exchange coupling, and we derive the dynamics therefrom. After describing and explaining the basic dynami...
February 21, 2006
Techniques for coherent control of electron spin-nuclear spin interactions in quantum dots can be directly applied in spintronics and in quantum information processing. In this work we study numerically the interaction of electron and nuclear spins in the context of storing the spin-state of an electron in a collective state of nuclear spins. We take into account the errors inherent in a realistic system: the incomplete polarization of the bath of nuclear spins and the differ...
May 12, 2009
We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provi...
June 11, 2007
In this article we review our work on the dynamics and decoherence of electron and hole spins in single and double quantum dots. The first part, on electron spins, focuses on decoherence induced via the hyperfine interaction while the second part covers decoherence and relaxation of heavy-hole spins due to spin-orbit interaction as well as the manipulation of heavy-hole spin using electric dipole spin resonance.
December 14, 2005
We consider the decoherence of a single localized electron spin due to its coupling to the lattice nuclear spin bath in a semiconductor quantum computer architecture. In the presence of an external magnetic field and at low temperatures, the dominant decoherence mechanism is the spectral diffusion of the electron spin resonance frequency due to the temporally fluctuating random magnetic field associated with the dipolar interaction induced flip-flops of nuclear spin pairs. Th...
November 7, 2003
We review and summarize recent theoretical and experimental work on electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with surrounding nuclear spins. This topic is of particular interest with respect to several proposals for quantum information processing in solid state systems. Specifically, we investigate the hyperfine interaction of an electron spin confined in a quantum dot in an s-type conduction band with the nuclear spins in...