August 18, 2005
Similar papers 3
November 23, 2014
We study the dynamics of entanglement of two electron spins in two quantum dots, in which each electron is interacting with its nuclear spin environment. Focusing on the case of uncoupled dots, and starting from either Bell or Werner states of two qubits, we calculate the decay of entanglement due to the hyperfine interaction with the nuclei. We mostly focus on the regime of magnetic fields in which the bath-induced electron spin flips play a role, for example their presence ...
November 3, 2007
We report a measurement of the spin-echo decay of a single electron spin confined in a semiconductor quantum dot. When we tip the spin in the transverse plane via a magnetic field burst, it dephases in 37 ns due to the Larmor precession around a random effective field from the nuclear spins in the host material. We reverse this dephasing to a large extent via a spin-echo pulse, and find a spin-echo decay time of about 0.5 microseconds at 70 mT. These results are in the range ...
February 5, 2007
The time evolution of spin states of two electrons interacting with a nuclear spin bath in a quantum dot system is studied. The hyperfine interaction between the electrons and the nuclear spins is modeled by an isotropic Heisenberg interaction, and the interaction between the electron spins by Heisenberg exchange. Depending on the extent of the overlap between the spatial wave functions of the electrons, there are two physically different cases, namely the two qubits either i...
September 27, 2010
We theoretically investigate the spin dynamics of a heavy hole confined to an unstrained III-V semiconductor quantum dot and interacting with a narrowed nuclear-spin bath. We show that band hybridization leads to an exponential decay of hole-spin superpositions due to hyperfine-mediated nuclear pair flips, and that the accordant single-hole-spin decoherence time T2 can be tuned over many orders of magnitude by changing external parameters. In particular, we show that, under e...
March 19, 2014
We address the question of the role of quantum correlations beyond entanglement in context of quantum magnetometry. To this end, we study the evolution of the quantum discord, measured by the rescaled discord, of two electron-spin qubits interacting with an environment of nuclear spins via the hyperfine interaction. We have found that depending on the initial state the evolution can or cannot display indifferentiability points in its time-evolution (due to the energy conserva...
January 24, 2012
We consider a system of two strongly coupled electron spins in zero magnetic field, each of which is interacting with an individual bath of nuclear spins via the hyperfine interaction. Applying the long spin approximation (LSA) introduced in Europhys. Lett. 95, 47009 (here each bath is replaced by a single long spin), we numerically study the electron spin and entanglement dynamics. We demonstrate that the decoherence time is scaling with the bath size according to a power la...
July 24, 2014
We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin...
April 10, 2006
We review our investigation of the spin dynamics for two electrons confined to a double quantum dot under the influence of the hyperfine interaction between the electron spins and the surrounding nuclei. Further we propose a scheme to narrow the distribution of difference in polarization between the two dots in order to suppress hyperfine induced decoherence.
January 7, 2008
The coherence time of an electron spin decohered by the nuclear spin environment in a quantum dot can be substantially increased by subjecting the electron to suitable dynamical decoupling sequences. We analyze the performance of high-level decoupling protocols by using a combination of analytical and exact numerical methods, and by paying special attention to the regimes of large inter-pulse delays and long-time dynamics, which are outside the reach of standard average Hamil...
December 19, 2007
Decoherence of a localized electron spin in a solid state material (the ``central spin'' problem) at low temperature is believed to be dominated by interactions with nuclear spins in the lattice. This decoherence is partially suppressed through the application of a large magnetic field that splits the energy levels of the electron spin and prevents depolarization. However, dephasing decoherence resulting from a dynamical nuclear spin bath cannot be removed in this way. Fluctu...