September 19, 2005
Similar papers 2
October 19, 2012
We employ ab-initio electronic structure calculations to search for spin gapless semiconductors, a recently identified new class of materials, among the inverse Heusler compounds. The occurrence of this property is not accompanied by a general rule and results are materials specific. The six compounds identified show semiconducting behavior concerning the spin-down band structure and in the spin-up band structure the valence and conduction bands touch each other leading to 10...
August 8, 2018
Based on high throughput density functional theory calculations, we performed systematic screening for spin-gapless semiconductors (SGSs) in quaternary Heusler alloys XX 0 YZ (X, X 0 , and Y are transition metal elements without Tc, and Z is one of B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb, and Bi). Following the empirical rule, we focused on compounds with 21, 26, or 28 valence electrons, resulting in 12, 000 possible chemical compositions. After systematically evaluating the...
November 7, 2006
In this work, results of {\it ab-initio} band structure calculations for $A_2BC$ Heusler compounds that have $A$ and $B$ sites occupied by transition metals and $C$ by a main group element are presented. This class of materials includes some interesting half-metallic and ferromagnetic properties. The calculations have been performed in order to understand the properties of the minority band gap and the peculiar magnetic behavior found in these materials. Among the interesting...
December 12, 2018
Half-metallicity (HM) offers great potential for engineering spintronic applications, yet only few magnetic materials present metallicity in just one spin channel. In addition, most HM systems become magnetically disordered at temperatures well below ambient conditions, which further hinders the development of spin-based electronic devices. Here, we use first-principles methods based on density functional theory (DFT) to investigate the electronic, magnetic, structural, mixin...
December 7, 2018
Employing {\it ab initio} electronic structure calculations we extensively study ternary Heusler compounds having the chemical formula X$_2$X$^\prime$Z, where X = Mn, Fe or Co; Z = Al or Si; and X$^\prime$ changes along the row of 4$d$ transition metals. A comprehensive overview of these compounds, addressing the trends in structural, electronic, magnetic properties and Curie temperature is presented here along with the search for new materials for spintronics applications. A...
November 17, 2006
We have studied in details the electronic structure and magnetism in M (Mn and Cr) doped semiconducting half-Heusler compounds FeVSb, CoTiSb and NiTiSn (XM$_{x}$Y$_{1-x}$Z) in a wide concentration range using local-spin density functional method in the framework of tight-binding linearized muffin tin orbital method(TB-LMTO) and supercell approach. Our calculations indicate that some of these compounds are not only ferromagnetic but also half-metallic and may be useful for spi...
March 6, 2017
Among Heusler compounds, the ones being magnetic semiconductors (also known as spin-filter materials) are widely studied as they offer novel functionalities in spintronic/magnetoelectronic devices. The spin-gapless semiconductors are a special case. They possess a zero or almost-zero energy gap in one of the two spin channels. We employ the $GW$ approximation, which allows an elaborate treatment of the electronic correlations, to simulate the electronic band structure of thes...
October 11, 2005
Intermetallic Heusler alloys are amongst the most attractive half-metallic systems due to the high Curie temperatures and the structural similarity to the binary semiconductors. In this review we present an overview of the basic electronic and magnetic properties of both Heusler families: the so-called half-Heusler alloys like NiMnSb and the the full-Heusler alloys like Co$_2$MnGe. \textit{Ab-initio} results suggest that both the electronic and magnetic properties in these co...
March 15, 2016
Transition-metal-based Heusler semiconductors are promising materials for a variety of applications ranging from spintronics to thermoelectricity. Employing the $GW$ approximation within the framework of the FLAPW method, we study the quasi-particle band structure of a number of such compounds being almost gapless semiconductors. We find that in contrast to the \textit{sp}-electron based semiconductors such as Si and GaAs, in these systems the many-body corrections have a min...
September 9, 2020
The study of structural, electronic, magnetic, and elastic properties of new series of semi-Heusler alloys MnNbZ (Z=As, Sb) and FeNbZ (Z=Sn, Pb) has been performed by density functional theory. The magnetic phase and hence the structural stability of the alloys were considered wherein ferromagnetic state is found to stable. The half-metallic states are observed from the density of states and band structure calculations. The total magnetic moments found for all studied compoun...