September 19, 2005
Similar papers 3
July 30, 2015
The crystal structure, electronic and magnetic properties of the new full-Heusler compounds Zr2MnZ (Z=Al, Ga, In), were studied within the Density Functional Theory (DFT) framework. The materials exhibit unique properties that connect the spin gapless semiconducting character with the completely compensated ferrimagnetism. In magnetic configurations, Zr2MnZ (Z=Al, Ga, In) crystallize in inverse Heusler structure, are stable against decomposition and have zero magnetic moment ...
April 14, 2020
For a material that is a half-metal, there should exist a range of compositions for half-metallicity. This compositional range can be expressed in terms of electron count and computed. We investigate electronic and magnetic properties of doped full- and half-Heusler alloys (stoichiometry XYZ2 and XYZ, respectively) with elements X from groups 13-16 and periods 3-6 of the Periodic Table, Y={Mn, Fe}, and Z={Co, Ni}. Using spin density functional theory, we predict shifts of the...
October 11, 2010
We systematically investigate the topological band structures of half-Heusler compounds using first-principles calculations. The modified Becke-Johnson exchange potential together with local density approximation for the correlation potential (MBJLDA) has been used here to obtain accurate band inversion strength and band order. Our results show that a large number of half-Heusler compounds are candidates for three-dimensional topological insulators. The difference between ban...
March 26, 2002
We study the origin of the gap and the role of chemical composition in the half-ferromagnetic Heusler alloys using the full-potential screened KKR method. In the paramagnetic phase the C1_b compounds, like NiMnSb, present a gap. Systems with 18 valence electrons, Z_t, per unit cell, like CoTiSb, are semiconductors, but when Z_t > 18 antibonding states are also populated, thus the paramagnetic phase becomes unstable and the half-ferromagnetic one is stabilized. The minority oc...
February 9, 2023
Half-Heusler compounds with 18 valence electrons per unit cell are well-known non-magnetic semiconductors. Employing first-principles electronic band structure calculations, we study the interface properties of the half-Heusler heterojunctions based on FeVSb, CoTiSb, CoVSn, and NiTiSn compounds, which belong to this category of materials. Our results show that several of these heterojunction interfaces become not only metallic but also magnetic. The emergence of spin-polariza...
October 30, 2006
Half-metallic Heusler alloys are amongst the most promising materials for future magnetoelectronic applications. We review some recent results on the electronic properties of these compounds. The origin of the gap in these half-metallic alloys and its connection to the magnetic properties are well understood. Changing the lattice parameter shifts slightly the Fermi level. Spin-orbit coupling induces states within the gap but the alloys keep a very high degree of spin-polariza...
October 7, 2019
Renewable energy resources have emerged as the best alternatives to fossil fuel energy which are rapidly declining with time. Here, eight valence-electron count Half-Heusler(HH) alloys have been studied using reliable first principles calculations in the search of potential candidates for renewable energy applications like thermoelectric (TE), solar harvesting, topological insulator (TI) and transparent conductor (TC) applications. The initial screening parameters used for ou...
December 20, 2018
The structural, electronic and magnetic properties of half-Heusler compounds XVSb (X $=$ Fe, Co and Ni) are investigated by using the density functional theory with generalized gradient approximation (GGA), and Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange potential approximation. It is found that the half-metallic gaps are generally reasonably widened by mBJ as compared to the GGA approximation. The magnetic proprieties of XVSb (X $=$ Fe, Co and Ni) are well defined wi...
December 11, 2018
In this work, we provide important insights into the evolution of half-metallicity in quaternary Heusler alloys. Employing {\it ab initio} electronic structure methods we study 18 quaternary Heusler compounds having the chemical formula CoX$^\prime$Y$^\prime$Al, where Y$^\prime$ = Mn, Fe; and X$^\prime$ a 4$d$ element. Along with the search for new materials for spintronics applications, the trends in structural, electronic, magnetic properties and Curie temperature were inve...
August 4, 2022
The realization of the stable structure of Heusler compounds and the study of different properties is an important step for their potential application in spintronics and magnetoelectronic devices. In this paper, using the plane-wave pseudopotential method within the framework of density functional theory (DFT), we investigate 25 Quaternary Heusler compounds for their electronic, magnetic, and mechanical properties. The Open Quantum Materials Database (OQMD) is used to screen...