October 17, 2005
Similar papers 3
October 5, 2000
We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical bifurcation, and provides an approximate description for the whole dynamics of the coupled networks. We show that these analytical predictions are in good agreement with numerical results for sufficiently large networks, and study finite-size effects in detail. Prel...
August 28, 1997
This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...
February 29, 2012
We study the dynamics of randomly connected networks composed of binary Boolean elements and those composed of binary majority vote elements. We elucidate their differences in both sparsely and densely connected cases. The quickness of large network dynamics is usually quantified by the length of transient paths, an analytically intractable measure. For discrete-time dynamics of networks of binary elements, we address this dilemma with an alternative unified framework by usin...
December 6, 2007
We show that to correctly describe the position of the critical line in the Kauffman random boolean networks one must take into account percolation phenomena underlying the process of damage spreading. For this reason, since the issue of percolation transition is much simpler in random undirected networks, than in the directed ones, we study the Kauffman model in undirected networks. We derive the mean field formula for the critical line in the giant component of these networ...
February 10, 2023
The critical Kauffman model with connectivity one is the simplest class of critical Boolean networks. Nevertheless, it exhibits intricate behavior at the boundary of order and chaos. We introduce a formalism for expressing the dynamics of multiple loops as a product of the dynamics of individual loops. Using it, we prove that the number of attractors scales as $2^m$, where $m$ is the number of nodes in loops - as fast as possible, and much faster than previously believed.
October 19, 2004
In this work we analyze scale-free networks with different power law spectra $N(k) \sim k^{-\gamma}$ under a boolean dynamic, where the boolean rule that each node obeys is a function of its connectivity $k$. This is done by using only two logical functions (AND and XOR) which are controlled by a parameter $q$. Using damage spreading technique we show that the Hamming distance and the number of 1's exhibit power law behavior as a function of $q$. The exponents appearing in th...
May 30, 2006
The dynamic stability of the Boolean networks representing a model for the gene transcriptional regulation (Kauffman model) is studied by calculating analytically and numerically the Hamming distance between two evolving configurations. This turns out to behave in a universal way close to the phase boundary only for in-degree distributions with a finite second moment. In-degree distributions of the form $P_d(k)\sim k^{-\gamma}$ with $2<\gamma<3$, thus having a diverging secon...
April 24, 2009
We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indi...
April 11, 2014
Boolean variables are such that they take only values on $ \mathbb{Z}_2 \cong \left\{0, 1 \right\} $. \textit{NK}-Kauffman networks are dynamical deterministic systems of $ N $ Boolean functions that depend only on $ K \leq N $ Boolean variables. They were proposed by Kauffman as a first step to understand cellular behaviour [Kauffman, S.A.; {\rm The Large Scale Structure and Dynamics of Gene Control Circuits: An Ensemble Approach}. {\it J. Theoret. Biol.} {\bf 44} (1974) 167...
December 12, 2002
Random Boolean networks, originally invented as models of genetic regulatory networks, are simple models for a broad class of complex systems that show rich dynamical structures. From a biological perspective, the most interesting networks lie at or near a critical point in parameter space that divides ``ordered'' from ``chaotic'' attractor dynamics. In the ordered regime, we show rigorously that the average number of relevant nodes (the ones that determine the attractor dyna...