March 1, 2012
The closure dynamics of a pre-equilibrated DNA denaturation bubble is studied using both Brownian dynamics simulations and an analytical approach. The numerical model consists of two semi-flexible interacting single strands (ssDNA) and a bending modulus which depends on the base-pair state, with double-strand DNA (dsDNA) segments being 50 times stiffer than ssDNA ones. For DNA lengths from N=20 to 100 base-pairs (bp) and initial bubble sizes of N-6 bp, long closure times of 0...
November 28, 2006
While the statistical mechanical description of DNA has a long tradition, renewed interest in DNA melting from a physics perspective is nourished by measurements of the fluctuation dynamics of local denaturation bubbles by single molecule spectroscopy. The dynamical opening of DNA bubbles (DNA breathing) is supposedly crucial for biological functioning during, for instance, transcription initiation and DNA's interaction with selectively single-stranded DNA binding proteins. M...
May 15, 2014
The issue of the nucleation and slow closure mechanisms of non superhelical stress-induced denaturation bubbles in DNA is tackled using coarse-grained MetaDynamics and Brownian simulations. A minimal mesoscopic model is used where the double helix is made of two interacting bead-spring rotating strands with a prescribed torsional modulus in the duplex state. We demonstrate that timescales for the nucleation (resp. closure) of an approximately 10 base-pair bubble, in agreement...
May 2, 2003
The formation of local denaturation zones (bubbles) in double-stranded DNA is an important example for conformational changes of biological macromolecules. We study the dynamics of bubble formation in terms of a Fokker-Planck equation for the probability density to find a bubble of size n base pairs at time t, on the basis of the free energy in the Poland-Scheraga model. Characteristic bubble closing and opening times can be determined from the corresponding first passage tim...
December 3, 2010
We investigate DNA breathing dynamics by suggesting and examining several different Brownian functionals associated with bubble lifetime and reactivity. Bubble dynamics is described as an overdamped random walk in the number of broken base pairs. The walk takes place on the Poland-Scheraga free energy landscape. We suggest several probability distribution functions that characterize the breathing process, and adopt the recently studied backward Fokker-Planck method and the pa...
June 17, 2005
We propose a stochastic Gillespie scheme to describe the temporal fluctuations of local denaturation zones in double-stranded DNA as a single molecule time series. It is demonstrated that the model recovers the equilibrium properties. We also study measurable dynamical quantities such as the bubble size autocorrelation function. This efficient computational approach will be useful to analyse in detail recent single molecule experiments on clamped homopolymer breathing domains...
February 7, 2013
The closure of long equilibrated denaturation bubbles in DNA is studied using Brownian dynamics simulations. A minimal mesoscopic model is used where the double-helix is made of two interacting bead-spring freely rotating strands, with a non-zero torsional modulus in the duplex state, $\kappa_\phi=$200 to 300 kT. For DNAs of lengths N=40 to 100 base-pairs (bps) with a large initial bubble in their middle, long closure times of 0.1 to 100 microseconds are found. The bubble sta...
October 26, 2006
We investigate the coalescence of two DNA-bubbles initially located at weak segments and separated by a more stable barrier region in a designed construct of double-stranded DNA. The characteristic time for bubble coalescence and the corresponding distribution are derived, as well as the distribution of coalescence positions along the barrier. Below the melting temperature, we find a Kramers-type barrier crossing behaviour, while at high temperatures, the bubble corners perfo...
October 19, 2006
After crossing an initial barrier to break the first base-pair (bp) in double-stranded DNA, the disruption of further bps is characterized by free energies between less than one to a few kT. This causes the opening of intermittent single-stranded bubbles. Their unzipping and zipping dynamics can be monitored by single molecule fluorescence or NMR methods. We here establish a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of a master equation that go...
March 16, 2011
We present a general framework to study the thermodynamic denaturation of double-stranded DNA under superhelical stress. We report calculations of position- and size-dependent opening probabilities for bubbles along the sequence. Our results are obtained from transfer-matrix solutions of the Zimm-Bragg model for unconstrained DNA and of a self-consistent linearization of the Benham model for superhelical DNA. The numerical efficiency of our method allows for the analysis of e...