July 28, 2006
Similar papers 4
October 17, 2020
The rational design of single molecule electrical components requires a deep and predictive understanding of structure-function relationships. Here we explore the relationship between chemical substituents and the conductance of metal-single molecule-metal junctions, using functionalized oligophenylenevinylenes as a model system. Using a combination of mechanically controlled break-junction experiments and various levels of theory including non-equilibrium Green's functions, ...
August 8, 2023
Achieving highly transmitting molecular junctions through resonant transport at low bias is key to the next-generation low-power molecular devices. Although, resonant transport in molecular junctions was observed by connecting a molecule between the metal electrodes via chemical anchors by applying a high source-drain bias (> 1V), the conductance was limited to < 0.1 G$_0$, G$_0$ being the quantum of conductance. Here, we report electronic transport measurements by directly c...
September 19, 2006
Ab initio calculations of phenyl dithiol connected to Au, Ag, Pd, and Pt electrodes are performed using non-equilibrium Green's functions and density functional theory. For each metal, the properties of the molecular junction are considered both in equilibrium and under bias. In particular, we consider in detail charge transfer, changes in the electrostatic potential, and their subsequent effects on the IV curves through the junctions. Gold is typically used in molecular junc...
May 30, 2008
An integrated piecewise thermal equilibrium approach based on the first-principles calculation method has been developed to calculate bias dependent electronic structures and current- and differential conductance-voltage characteristics of the gold-benzene-1,4-dithiol-gold molecular junction. The calculated currents and differential conductance have the same order of magnitude as experimental ones. An electron transfer was found between the two electrodes when a bias is appli...
December 12, 2015
We present ab-initio transport calculations for molecular junctions that include graphene as a protecting layer between a single molecule and gold electrodes. This vertical setup has recently gained significant interest in experiment for the design of particularly stable and reproducible devices. We observe that the signals from the molecule in the electronic transmission are overlayed by the signatures of the graphene sheet, thus raising the need for a reinterpretation of th...
October 21, 2004
Exploring the use of individual molecules as active components in electronic devices has been at the forefront of nanoelectronics research in recent years. Compared to semiconductor microelectronics, modeling transport in single-molecule devices is much more difficult due to the necessity of including the effects of the device electronic structure and the interface to the external contacts at the microscopic level. Theoretical formulation of the problem therefore requires int...
October 8, 2001
We present an atomistic theory of electronic transport through single organic molecules that reproduces the important features of the current-voltage characteristics observed in recent experiments. We trace these features to their origin in the electronic structure of the molecules and their local atomic environment. We demonstrate how conduction channels arise from the molecular orbitals and elucidate which specific properties of the individual orbitals determine their contr...
June 2, 2016
We present a theoretical analysis aimed at understanding electrical conduction in molecular tunnel junctions. We focus on discussing the validity of coherent versus incoherent theoretical formulations for single-level tunneling to explain experimental results obtained under a wide range of experimental conditions, including measurements in individual molecules connecting the leads of electromigrated single-electron transistors and junctions of self-assembled monolayers (SAM) ...
May 21, 2010
Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab-initio calculations of the non-linear current voltage relations for a broad class of single-molecule transport junctions in order to assess the applicability and limitations of TVS. We find, that in order to fully utilize TVS as ...
January 8, 2009
Molecular-scale components are expected to be central to nanoscale electronic devices. While molecular-scale switching has been reported in atomic quantum point contacts, single-molecule junctions provide the additional flexibility of tuning the on/off conductance states through molecular design. Thus far, switching in single-molecule junctions has been attributed to changes in the conformation or charge state of the molecule. Here, we demonstrate reversible binary switching ...