August 9, 2006
Similar papers 3
April 9, 2015
We consider a dissipative flow network that obeys the standard linear nodal flow conservation, and where flows on edges are driven by potential difference between adjacent nodes. We show that in the case when the flow is a monotonically increasing function of the potential difference, solution of the network flow equations is unique and can be equivalently recast as the solution of a strictly convex optimization problem. We also analyze the maximum throughput problem on such ...
July 16, 2020
We derive conditions for monotonicity properties that characterize general flows of a commodity over a network, where the flow is described by potential and flow dynamics on the edges, as well as potential continuity and Kirchhoff-Neumann mass balance requirements at nodes. The transported commodity may be injected or withdrawn at any of the network nodes, and its movement throughout the network is controlled by nodal actuators. For a class of dissipative nonlinear parabolic ...
September 2, 2021
We study network properties of networks evolving in time based on optimal transport principles. These evolve from a structure covering uniformly a continuous space towards an optimal design in terms of optimal transport theory. At convergence, the networks should optimize the way resources are transported through it. As the network structure shapes in time towards optimality, its topological properties also change with it. The question is how do these change as we reach optim...
September 27, 2004
We study spatial networks that are designed to distribute or collect a commodity, such as gas pipelines or train tracks. We focus on the cost of a network, as represented by the total length of all its edges, and its efficiency in terms of the directness of routes from point to point. Using data for several real-world examples, we find that distribution networks appear remarkably close to optimal where both these properties are concerned. We propose two models of network grow...
October 14, 2010
In this paper, we study the role of boundary conditions on the optimal shape of a dyadic tree in which flows a Newtonian fluid. Our optimization problem consists in finding the shape of the tree that minimizes the viscous energy dissipated by the fluid with a constrained volume, under the assumption that the total flow of the fluid is conserved throughout the structure. These hypotheses model situations where a fluid is transported from a source towards a 3D domain into which...
October 15, 2018
Numerous networks, such as transportation, distribution and delivery networks optimize their designs in order to increase efficiency and lower costs, improving the stability of its intended functions, etc. Networks that distribute goods, such as electricity, water, gas, telephone and data (Internet), or services as mail, railways and roads are examples of transportation networks. The optimal design fixes network architecture, including clustering, degree distribution, hierarc...
May 29, 2009
Leaf venation is a pervasive example of a complex biological network, endowing leaves with a transport system and mechanical resilience. Transport networks optimized for efficiency have been shown to be trees, i.e. loopless. However, dicotyledon leaf venation has a large number of closed loops, which are functional and able to transport fluid in the event of damage to any vein, including the primary veins. Inspired by leaf venation, we study two possible reasons for the exist...
November 7, 2023
Adaptive transport networks are known to contain loops when subject to hydrodynamic fluctuations. However, fluctuations are no guarantee that a loop will form, as shown by loop-free networks driven by oscillating flows. We provide a complete stability analysis of the dynamical behaviour of any loop formed by fluctuating flows. We find a threshold for loop stability that involves an interplay of geometric constraints and hydrodynamic forcing mapped to constant and fluctuating ...
April 9, 2015
We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call...
September 12, 2019
In this note we present a reconstructive algorithm for solving the cross-sectional pipe area from boundary measurements in a tree network with one inaccessbile end. This is equivalent to reconstructing the first order perturbation to a wave equation on a quantum graph from boundary measurements at all network ends except one. The method presented here is based on a time reversal boundary control method originally presented by Sondhi and Gopinath for one dimensional problems a...