August 25, 2006
Similar papers 4
September 16, 2010
Since gene regulatory systems contain sometimes only a small number of molecules, these systems are not described well by macroscopic rate equations; a master equation approach is needed for such cases. We develop an approximation scheme for dealing with the stochasticity of the gene regulatory systems. Using an effective interaction concept, original master equations can be reduced to simpler master equations, which can be solved analytically. We apply the approximation sche...
July 4, 2017
Decisions in the cell that lead to its ultimate fate are important for cellular functions such as proliferation, growth, differentiation, development and death. Understanding this decision process is imperative for advancements in the treatment of diseases such as cancer. It is clear that underlying gene regulatory networks and surrounding environments of the cells are crucial for function. The self-repressor is a very abundant gene regulatory motif, and is often believed to ...
December 1, 2011
A toggle switch consists of two genes that mutually repress each other. This regulatory motif is active during cell differentiation and is thought to act as a memory device, being able to choose and maintain cell fate decisions. In this contribution, we study the stability and dynamics of a two-stage gene expression switch within a probabilistic framework inspired by the properties of the Pu/Gata toggle switch in myeloid progenitor cells. We focus on low mRNA numbers, high pr...
May 18, 2016
During tissue development, patterns of gene expression determine the spatial arrangement of cell types. In many cases, gradients of secreted signaling molecules - morphogens - guide this process. The continuous positional information provided by the gradient is converted into discrete cell types by the downstream transcriptional network that responds to the morphogen. A mechanism commonly used to implement a sharp transition between two adjacent cell fates is the genetic togg...
July 29, 2016
Timing is essential for many cellular processes, from cellular responses to external stimuli to the cell cycle and circadian clocks. Many of these processes are based on gene expression. For example, an activated gene may be required to reach in a precise time a threshold level of expression that triggers a specific downstream process. However, gene expression is subject to stochastic fluctuations, naturally inducing an uncertainty in this threshold-crossing time with potenti...
June 28, 2018
In a stochastic process, noise often modifies the picture offered by the mean field dynamics. In particular, when there is an absorbing state, the noise erases a stable fixed point of the mean field equation from the stationary distribution, and turns it into a transient peak. We make a quantitative analysis of this effect for a simple genetic regulatory network with positive feedback, where the proteins become extinct in the presence of stochastic noise, contrary to the pred...
November 1, 2003
We study genetic switches formed from pairs of mutually repressing operons. The switch stability is characterised by a well defined lifetime which grows sub-exponentially with the number of copies of the most-expressed transcription factor, in the regime accessible by our numerical simulations. The stability can be markedly enhanced by a suitable choice of overlap between the upstream regulatory domains. Our results suggest that robustness against biochemical noise can provid...
May 10, 2007
A dynamical mean-field theory is developed to analyze stochastic single-cell dynamics of gene expression. By explicitly taking account of nonequilibrium and nonadiabatic features of the DNA state fluctuation, two-time correlation functions and response functions of single-cell dynamics are derived. The method is applied to a self-regulating gene to predict a rich variety of dynamical phenomena such as anomalous increase of relaxation time and oscillatory decay of correlations...
April 15, 2012
Biochemical reaction networks are subjected to large fluctuations attributable to small molecule numbers, yet underlie reliable biological functions. Most theoretical approaches describe them as purely deterministic or stochastic dynamical systems, depending on which point of view is favored. Here, we investigate the dynamics of a self-repressing gene using an intermediate approach based on a moment closure approximation of the master equation, which allows us to take into ac...
March 14, 2016
We discuss the transition paths in a coupled bistable system consisting of interacting multiple identical bistable motifs. We propose a simple model of coupled bistable gene circuits as an example, and show that its transition paths are bifurcating. We then derive a criterion to predict the bifurcation of transition paths in a generalized coupled bistable system. We confirm the validity of the theory for the example system by numerical simulation. We also demonstrate in the e...