August 25, 2006
Similar papers 5
January 22, 2019
There has been an increasing demand for formal methods in the design process of safety-critical synthetic genetic circuits. Probabilistic model checking techniques have demonstrated significant potential in analyzing the intrinsic probabilistic behaviors of complex genetic circuit designs. However, its inability to scale limits its applicability in practice. This chapter addresses the scalability problem by presenting a state-space approximation method to remove unlikely stat...
December 4, 2008
Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Here we have developed ...
June 14, 2020
The study of transcription remains one of the centerpieces of modern biology with implications in settings from development to metabolism to evolution to disease. Precision measurements using a host of different techniques including fluorescence and sequencing readouts have raised the bar for what it means to quantitatively understand transcriptional regulation. In particular our understanding of the simplest genetic circuit is sufficiently refined both experimentally and the...
January 3, 2005
The functions of most genetic circuits require sufficient degrees of cooperativity in the circuit components. While mechanisms of cooperativity have been studied most extensively in the context of transcriptional initiation control, cooperativity from other processes involved in the operation of the circuits can also play important roles. In this study, we examine a simple kinetic source of cooperativity stemming from the nonlinear degradation of multimeric proteins. Ample ex...
October 26, 2014
It is well-known that gene activation/deactivation dynamics may be a major source of randomness in genetic networks, also in the case of large concentrations of the transcription factors. In this work, we investigate the effect of realistic extrinsic noises acting on gene deactivation in a common network motif - the positive feedback of a transcription factor on its own synthesis - under a variety of settings, i.e., distinct cellular types, distribution of proteins and proper...
July 16, 2014
A simple stochastic model of a self regulating gene that displays bistable switching is analyzed. While on, a gene transcribes mRNA at a constant rate. Transcription factors can bind to the DNA and affect the gene's transcription rate. Before an mRNA is degraded, it synthesizes protein, which in turn regulates gene activity by influencing the activity of transcription factors. Protein is slowly removed from the system through degradation. Depending on how the protein regulate...
November 18, 2018
Gene expression and its regulation is a nonequilibrium stochastic process. Different molecules are involved in several biochemical steps in this process with low copies. It is observed that the stochasticity in biochemical processes is mainly due to the low copy number of the molecules present in the system. Several studies also show that the nonequilibrium biochemical processes require energy cost. But cellular system has developed itself through natural evolution by minimiz...
May 10, 2010
Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision ...
June 30, 2013
We present a detailed dynamical model of the behavior of transcription-translation circuits in vitro that makes explicit the roles played by essential molecular resources. A set of simple two-gene test circuits operating in a cell-free biochemical 'breadboard' validate this model and highlight the consequences of limited resource availability. In particular, we are able to confirm the existence of biomolecular 'crosstalk' and isolate its individual sources. The implications o...
January 12, 2015
Stochastic kinetic models of genetic expression are able to describe protein fluctuations. A comparative study of the canonical and a feedback model is given here by using stochastic simulation methods. The feedback model is skeleton model implementation of the circular gene hypothesis, which suggests the interaction between the synthesis and degradation of mRNA. Qualitative and quantitative changes in the shape and in the numerical characteristics of the stationary distribut...