July 3, 2013
We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of t...
May 24, 2007
We have performed all-optical measurements of spin relaxation in single self-assembled InAs/GaAs quantum dots (QD) as a function of static external electric and magnetic fields. To study QD spin dynamics we measure the degree of resonant absorption which results from a competition between optical spin pumping induced by the resonant laser field and spin relaxation induced by reservoirs. Fundamental interactions that determine spin dynamics in QDs are hyperfine coupling to QD ...
August 24, 2006
Isolated electron spins in semiconductor nanostructures are promising qubit candidates for a solid state quantum computer, There have seen truly impressive experimental progresses in the study of single spins in the past two years. In this paper we analytically solve the {\it Non-Markovian} single electron spin dynamics due to inhomogeneous hyperfine couplings with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion ...
February 16, 2009
We observe multiple stable states of nuclear polarization in a double quantum dot under conditions of electron spin resonance. The stable states can be understood within an elaborated theoretical rate equation model for the polarization in each of the dots, in the limit of strong driving. This model also captures unusual features of the data, such as fast switching and a `wrong' sign of polarization. The results reported enable applications of this polarization effect, includ...
December 24, 2007
In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral w...
September 2, 2003
We propose a mechanism for very slow coherent oscillations of current and nuclear spins in a quantum dot system, that may qualitatively explain some recent experimental observations. We concentrate on an experimentally relevant double dot setup where hyperfine interaction lifts the spin blockade. We study the dependence of the magnitude and period of the oscillations on magnetic field and anisotropy.
May 6, 2014
We theoretically investigate the influence of the fluctuating Overhauser field on the spin of an electron confined to a quantum dot (QD). The fluctuations arise from nuclear angular momentum being exchanged between different nuclei via the nuclear magnetic dipole coupling. We focus on the role of the nuclear electric quadrupole moments (QPMs), which generally cause a reduction in internuclear spin transfer efficiency in the presence of electric field gradients. The effects on...
March 18, 2013
The role of nuclear spin fluctuations in the dynamic polarization of nuclear spins by electrons is investigated in (In,Ga)As quantum dots. The photoluminescence polarization under circularly polarized optical pumping in transverse magnetic fields (Hanle effect) is studied. A weak additional magnetic field parallel to the optical axis is used to control the efficiency of nuclear spin cooling and the sign of nuclear spin temperature. The shape of the Hanle curve is drastically ...
February 21, 2012
The mesoscopic spin system formed by the 10E4-10E6 nuclear spins in a semiconductor quantum dot offers a unique setting for the study of many-body spin physics in the condensed matter. The dynamics of this system and its coupling to electron spins is fundamentally different from its bulk counter-part as well as that of atoms due to increased fluctuations that result from reduced dimensions. In recent years, the interest in studying quantum dot nuclear spin systems and their c...
March 23, 2010
We theoretically investigate the controlled dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. Three regimes of long-term dynamics are identified, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. We show that in the case of unequal dots, build...