January 12, 2021
The dynamics of the coupled electron-nuclear spin system is studied in an ensemble of singly-charged (In,Ga)As/GaAs quantum dots (QDs) using periodic optical excitation at 1 GHz repetition rate. In combination with the electron-nuclei interaction, the highly repetitive excitation allows us to lock the electron spins into magnetic resonance in a transverse external magnetic field. Sweeping the field to higher values, the locking leads to an effective "diamagnetic" response of ...
March 15, 2013
We theoretically investigate dynamic nuclear spin polarization in a self-assembled quantum dot pumped optically by two laser beams. With the assumption that a noncollinear interaction between the hole spin and nuclear spins leads to nuclear spin polarization, we find that both weak and strong nuclear spin polarizations can arise, depending on the intensities and central frequencies of the lasers. For weak nuclear spin polarization, we use a perturbation method to show that th...
June 8, 2018
Periodic laser pulsing of singly charged semiconductor quantum dots in an external magnetic field leads to a synchronization of the spin dynamics with the optical excitation. The pumped electron spins partially rephase prior to each laser pulse, causing a revival of electron spin polarization with its maximum at the incidence time of a laser pulse. The amplitude of this revival is amplified by the frequency focusing of the surrounding nuclear spins. Two complementary theoreti...
August 11, 2021
We investigate experimentally and theoretically the temporal evolution of the spin of the conduction band electron and that of the valence band heavy hole, both confined in the same semiconductor quantum dot. In particular, the coherence of the spin purity in the limit of a weak externally applied magnetic field, comparable in strength to the Overhauser field due to fluctuations in the surrounding nuclei spins. We use an all-optical pulse technique to measure the spin evoluti...
January 14, 2016
Repeated injection of spin polarized carriers in a quantum dot leads to the polarization of nuclear spins, a process known as dynamic nuclear spin polarization (DNP). Here, we report the first observation of p-shell carrier assisted DNP in single QDs at zero external magnetic field. The nuclear field - measured by using the Overhauser shift of the singly charged exciton state of the QDs - continues to increase, even after the carrier population in the s-shell saturates. This ...
September 15, 2006
We show that by illuminating an InGaAs/GaAs self-assembled quantum dot with circularly polarized light, the nuclei of atoms constituting the dot can be driven into a bistable regime, in which either a threshold-like enhancement or reduction of the local nuclear field by up to 3 Tesla can be generated by varying the intensity of light. The excitation power threshold for such a nuclear spin "switch" is found to depend on both external magnetic and electric fields. The switch is...
December 31, 2012
We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. In our prior work [Phys. Rev. Lett. 104, 226807 (2010)] we identified three regimes of long-term dynamics, including the build up of a large difference in the Overhauser fields across the dots, the saturation of the nuclear polarization process associated with formation of so-called "dark states," and the elimination of the difference field. In partic...
July 16, 2008
Very recently, the electric dipole spin resonance (EDSR) of single electrons in quantum dots was discovered by three independent experimental groups. Remarkably, these observations revealed three different mechanisms of EDSR: coupling of electron spin to its momentum (spin-orbit), to the operator of its position (inhomogeneous Zeeman coupling), and to the hyperfine Overhauser field of nuclear spins. In this paper, I present a unified microscopic theory of these resonances in ...
May 28, 2004
We have performed a systematic calculation for the non-Markovian dynamics of a localized electron spin interacting with an environment of nuclear spins via the Fermi contact hyperfine interaction. This work applies to an electron in the s -type orbital ground state of a quantum dot or bound to a donor impurity, and is valid for arbitrary polarization p of the nuclear spin system, and arbitrary nuclear spin I in high magnetic fields. In the limit of p=1 and I=1/2, the Born app...
January 31, 2013
We study dynamic polarization and resistive detection of nuclear spins in a semiconductor quantum dot (QD) under the Kondo effect regime. We find that the differential conductance spectra of the QD exhibit hysteresis under the Kondo effect regime in magnetic fields. Relevance of nuclear spins to the hysteresis is confirmed by the detection of nuclear magnetic resonance signals by monitoring the differential conductance. We attribute the origin of the hysteresis to the dynamic...