October 5, 2000
We analyze the synchronization transition for a pair of coupled identical Kauffman networks in the chaotic phase. The annealed model for Kauffman networks shows that synchronization appears through a transcritical bifurcation, and provides an approximate description for the whole dynamics of the coupled networks. We show that these analytical predictions are in good agreement with numerical results for sufficiently large networks, and study finite-size effects in detail. Prel...
June 23, 2006
We derive analytically the scaling behavior in the thermodynamic limit of the number of nonfrozen and relevant nodes in the most general class of critical Kauffman networks for any number of inputs per node, and for any choice of the probability distribution for the Boolean functions. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes in any critical network with more than one input per node scal...
January 5, 2005
We show that the mean number of attractors in a critical Boolean network under asynchronous stochastic update grows like a power law and that the mean size of the attractors increases as a stretched exponential with the system size. This is in strong contrast to the synchronous case, where the number of attractors grows faster than any power law.
August 28, 1997
This is the second paper of a series of two about the structural properties that influence the asymptotic dynamics of Random Boolean Networks. Here we study the functionally independent clusters in which the relevant elements, introduced and studied in our first paper, are subdivided. We show that the phase transition in Random Boolean Networks can also be described as a percolation transition. The statistical properties of the clusters of relevant elements (that we call modu...
August 1, 2012
In a series of articles published in 1986 Derrida, and his colleagues studied two mean field treatments (the quenched and the annealed) for \textit{NK}-Kauffman Networks. Their main results lead to a phase transition curve $ K_c \, 2 \, p_c \left( 1 - p_c \right) = 1 $ ($ 0 < p_c < 1 $) for the critical average connectivity $ K_c $ in terms of the bias $ p_c $ of extracting a "$1$" for the output of the automata. Values of $ K $ bigger than $ K_c $ correspond to the so-called...
June 22, 2007
This review explains in a self-contained way the properties of random Boolean networks and their attractors, with a special focus on critical networks. Using small example networks, analytical calculations, phenomenological arguments, and problems to solve, the basic concepts are introduced and important results concerning phase diagrams, numbers of relevant nodes and attractor properties are derived.
January 8, 2008
We describe systems using Kauffman and similar networks. They are directed funct ioning networks consisting of finite number of nodes with finite number of discr ete states evaluated in synchronous mode of discrete time. In this paper we introduce the notion and phenomenon of `structural tendencies'. Along the way we expand Kauffman networks, which were a synonym of Boolean netw orks, to more than two signal variants and we find a phenomenon during network g rowth which we ...
June 20, 2006
Random Boolean networks were introduced in 1969 by Kauffman as a model for gene regulation. By combining analytical arguments and efficient numerical simulations, we evaluate the properties of relevant components of critical random Boolean networks independently of update scheme. As known from previous work, the number of relevant components grows logarithmically with network size. We find that in most networks all relevant nodes with more than one relevant input sit in the s...
June 30, 2005
We derive mostly analytically the scaling behavior of the number of nonfrozen and relevant nodes in critical Kauffman networks (with two inputs per node) in the thermodynamic limit. By defining and analyzing a stochastic process that determines the frozen core we can prove that the mean number of nonfrozen nodes scales with the network size N as N^{2/3}, with only N^{1/3} nonfrozen nodes having two nonfrozen inputs. We also show the probability distributions for the numbers o...
October 17, 2005
We study the Boolean dynamics of the "quenched" Kauffman models with a directed scale-free network, comparing with that of the original directed random Kauffman networks and that of the directed exponential-fluctuation networks. We have numerically investigated the distributions of the state cycle lengths and its changes as the network size $N$ and the average degree $<k>$ of nodes increase. In the relatively small network ($N \sim 150$), the median, the mean value and the st...