September 3, 1998
Similar papers 2
May 26, 2014
We present specific-heat and neutron-scattering results for the \emph{S}=1/2 quantum antiferromagnet (dimethylammonium)(3,5-dimethylpyridinium)CuBr$_4$. The material orders magnetically at \emph{T}$_N$=1.99(2)\,K, and magnetic excitations are accompanied by an energy gap of 0.30(2) meV due to spin anisotropy. The system is best described as coupled two-leg spin-1/2 ladders with the leg exchange $J_{\rm leg}$=0.60(2)~meV, rung exchange $J_{\rm rung}$=0.64(9)~meV, interladder e...
March 21, 2012
We report a comprehensive experimental and theoretical study of the quasi-one-dimensional quantum magnet CuNCN. Based on magnetization measurements above room temperature as well as muon spin rotation and electron spin resonance measurements, we unequivocally establish the localized Cu+2-based magnetism and the magnetic transition around 70 K, both controversially discussed in the previous literature. Thermodynamic data conform to the uniform-spin-chain model with a nearest-n...
August 15, 2012
We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements indicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 +/- 0.03 muB/Cu. This value is significantly smaller than the single ion magnetic moment, ...
May 19, 1998
Specific heat ($C_V$) measurements in the spin-1/2 Cu$_2$(C$_2$H$_{12}$N$_2$)$_2$Cl$_4$ system under a magnetic field up to $H=8.25 T$ are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility and the low field specific heat are accurately reproduced by this model, deviations are observed below the critical field $H_{C1}$ at which the spin gap closes. ...
July 14, 2010
We present an experimental study of the two-dimensional S=1/2 square-lattice antiferromagnet Cu(pz)$_2$(ClO$_4$)$_2$ (pz denotes pyrazine - $C_4H_4N_2$) using specific heat measurements, neutron diffraction and cold-neutron spectroscopy. The magnetic field dependence of the magnetic ordering temperature was determined from specific heat measurements for fields perpendicular and parallel to the square-lattice planes, showing identical field-temperature phase diagrams. This sug...
April 4, 1997
Neutron scattering from copper benzoate, Cu(C6D5COO)2 3D2O, provides the first direct experimental evidence for field-dependent incommensurate low energy modes in a one-dimensional spin S = 1/2 antiferromagnet. Soft modes occur for wavevectors q=\pi +- dq(H) where dq(H) ~ 2 \pi M(H)/g\mu_B as predicted by Bethe ansatz and spinon descriptions of the S = 1/2 chain. Unexpected was a field-induced energy gap $\Delta(H) \propto H^\alpha$, where $\alpha = 0.65(3)$ as determined fro...
July 21, 2010
A comprehensive comparison between the magnetic field- and temperature-dependent low frequency spin dynamics in the antiferromagnetic spin-1/2 Heisenberg chain (AFHC) system copper pyrazine dinitrate, probed via the 13C-nuclear magnetic resonance (NMR) relaxation rate 1/T1, and the field theoretical approach in the Luttinger liquid (LL) regime has been performed. We have found a very good agreement between the experiment and theory in the investigated temperature and field ra...
October 27, 2015
We analyze measurements of the magnetization, differential susceptibility and specific heat of quasi-one dimensional insulator Cu(C$_4$H$_4$N$_2$)(NO$_3$)$_2$ (CuPzN) subjected to magnetic fields. We show that the thermodynamic properties are defined by quantum spin liquid formed with spinons, with the magnetic field tuning the insulator CuPzN towards quantum critical point related to fermion condensation quantum phase transition (FCQPT) at which the spinon effective mass div...
November 23, 2009
We report on high-field magnetization, specific-heat and electron spin resonance (ESR) studies of the quasi-two-dimensional spin-1/2 Heisenberg antiferromagnet [Cu(pyz)2(HF2)]PF6. The frequency-field diagram of ESR modes below TN = 4.38 K is described in the frame of the meanfield theory, confirming a collinear magnetic structure with an easy-plane anisotropy. The obtained results allowed us to determine the anisotropy/exchange interaction ratio, A/J = 0.003, and the upper li...
October 3, 2011
In this work we study the interplay between the crystal structure and magnetism of the pyroarsenate \alpha-Cu_2As_2O_7 by means of magnetization, heat capacity, electron spin resonance and nuclear magnetic resonance measurements as well as density functional theory (DFT) calculations and quantum Monte Carlo (QMC) simulations. The data reveal that the magnetic Cu-O chains in the crystal structure represent a realization of a quasi-one dimensional (1D) coupled alternating spin-...