October 9, 1998
Similar papers 4
June 6, 2005
We report inelastic light scattering measurements of spin and charge excitations in nanofabricated AlGaAs/GaAs quantum dots with few electrons. A narrow spin excitation peak is observed and assigned to the intershell triplet-to-singlet monopole mode of dots with four electrons. Configurationinteraction theory provides precise quantitative interpretations that uncover large correlation effects that are comparable to exchange Coulomb interactions.
December 7, 2015
We report the direct observation of coupling between a single self-assembled InAs quantum dot and a wetting layer, based on strong diamagnetic shifts of many-body exciton states using magneto-photoluminescence spectroscopy. An extremely large positive diamagnetic coefficient is observed when an electron in the wetting layer combines with a hole in the quantum dot; the coefficient is nearly one order of magnitude larger than that of the exciton states confined in the quantum d...
November 9, 2023
We present experiments in which self-assembled InAs quantum dots are coupled to a thin, suspended-beam GaAs resonator. The quantum dots are driven resonantly and the resonance fluorescence is detected. The narrow quantum-dot linewidths, just a factor of three larger than the transform limit, result in a high sensitivity to the mechanical motion. We show that one quantum dot couples to eight mechanical modes spanning a frequency range from $30$ to $600~\mathrm{MHz}$: one quant...
August 2, 2007
We report on the experimental observation of a hitherto ignored long-range electromagnetic coupling between self-assembled quantum dots. A 12 times enhancement of the quantum dot exciton lifetime is observed by means of time-resolved differential reflection spectroscopy. The enhancement is explained by utilizing and extending the local field effects as developed in \emph{Phys. Rev. B \textbf{64},125326 (2001)}. The electromagnetic coupling of the quantum dots results in a col...
October 2, 2009
We investigate the thermal quenching of the multimodal photoluminescence from InAs/InP (001) self-assembled quantum dots. The temperature evolution of the photoluminescence spectra of two samples is followed from 10 K to 300 K. We develop a coupled rate-equation model that includes the effect of carrier thermal escape from a quantum dot to the wetting layer and to the InP matrix, followed by transport, recapture or non-radiative recombination. Our model reproduces the tempera...
December 6, 2006
We report on the use of an aperture in an aluminum oxide layer to restrict current injection into a single self-assembled InAs quantum dot, from an ensemble of such dots within a large mesa. The insulating aperture is formed through the wet-oxidation of a layer of AlAs. Under photoluminescence we observe that only one quantum dot in the ensemble exhibits a Stark shift, and that the same single dot is visible under electroluminescence. Autocorrelation measurements performed on...
March 31, 2006
We have studied the emission properties of individual InAs quantum dots (QDs) grown in an InGaAsP matrix on InP(100) by metal-organic vapor-phase epitaxy. Low-temperature microphotoluminescence spectroscopy shows emission from single QDs around 1550 nm with characteristic exciton-biexciton behavior, and a biexciton antibinding energy of more than 2 meV. Temperature-dependent measurements reveal negligible optical-phonon induced broadening of the exciton line up to 50 K, and e...
December 8, 2010
We report on resonant optical spectroscopy of self-assembled InGaAs quantum dots in which the number of electrons can accurately be tuned to N=0,1,2 by an external gate voltage. Polarization, wave vector and magnetic field dependent measurements enable us to clearly distinguish between resonant Raman and resonant photoluminescence processes. The Raman spectra for N=1 and 2 electrons considerably differ from each other. In particular, for N=2, the quantum-dot He, the spectra e...
October 17, 2002
We investigated the size dependence of the ground state energy in self-assembled InAs quantum dots embedded in resonant tunneling diodes. Individual current steps observed in the current-voltage characteristics are attributed to resonant single-electron tunneling via the ground state of individual InAs quantum dots. The onset voltage of the first step observed is shown to decrease systematically from 200 mV to 0 with increasing InAs coverage. We relate this to a coverage-depe...
May 24, 2011
We present experimental and theoretical study of single semiconductor quantum dots excited by two non-degenerate, resonantly tuned variably polarized lasers. The first laser is tuned to excitonic resonances. Depending on its polarization it photogenerates a coherent single exciton state. The second laser is tuned to biexciton resonances. By scanning the energy of the second laser for various polarizations of the two lasers, while monitoring the emission from the biexciton and...