October 20, 2012
The adaptive evolution of large asexual populations is generally characterized by competition between clones carrying different beneficial mutations. This interference phenomenon slows down the adaptation speed and makes the theoretical description of the dynamics more complex with respect to the successional occurrence and fixation of beneficial mutations typical of small populations. A simplified modeling framework considering multiple beneficial mutations with equal and co...
January 13, 2020
We study an equation structured by age and a phenotypic trait describing the growth process of a population subject to aging, competition between individuals, and mutations. This leads to a renewal equation which occurs in many evolutionary biology problems. We aim to describe precisely the asymp-totic behavior of the solution, to infer properties that illustrate the concentration and adaptive dynamics of such a population. This work is a continuation of [38] where the case w...
April 16, 2020
We study a mathematical model describing the growth process of a population structured by age and a phenotypical trait, subject to aging, competition between individuals and rare mutations. Our goals are to describe the asymptotic behaviour of the solution to a renewal type equation, and then to derive properties that illustrate the adaptive dynamics of such a population. We begin with a simplified model by discarding the effect of mutations, which allows us to introduce the ...
January 6, 2021
In unicellular organisms such as bacteria and in most viruses, mutations mainly occur during reproduction. Thus, genotypes with a high birth rate should have a higher mutation rate. However, standard models of asexual adaptation such as the 'replicator-mutator equation' often neglect this effect. In this study, we investigate the emergence of a positive dependence between the birth rate and the mutation rate in models of asexual adaptation and the consequences of this depende...
September 3, 1997
We present a model for biological aging that considers the number of individuals whose (inherited) genetic charge determines the maximum age for death: each individual may die before that age due to some external factor, but never after that limit. The genetic charge of the offspring is inherited from the parent with some mutations, described by a transition matrix. The model can describe different strategies of reproduction and it is exactly soluble. We applied our method to...
August 21, 2022
Under constant selection, each trait has a fixed fitness, and small mutation rates allow populations to efficiently exploit the optimal trait. Therefore it is reasonable to expect mutation rates will evolve downwards. However, we find this need not be the case, examining several models of mutation. While upwards evolution of mutation rate has been found with frequency or time dependent fitness, we demonstrate its possibility in a much simpler context. This work uses adaptive ...
July 17, 2014
Motivated by the wide range of known self-replicating systems, some far from genetics, we study a system composed by individuals having an internal dynamics with many possible states that are partially stable, with varying mutation rates. Individuals reproduce and die with a rate that is a property of each state, not necessarily related to its stability, and the offspring is born on the parent's state. The total population is limited by resources or space, as for example in a...
September 29, 2023
The chronological age used in demography describes the linear evolution of the life of a living being. The chronological age cannot give precise information about the exact developmental stage or aging processes an organism has reached. On the contrary, the biological age (or epigenetic age) represents the true evolution of the tissues and organs of the living being. Biological age is not always linear and sometimes proceeds by discontinuous jumps. These jumps can be positive...
April 27, 2012
Evolutionary branching is analysed in a stochastic, individual-based population model under mutation and selection. In such models, the common assumption is that individual reproduction and life career are characterised by values of a trait, and also by population sizes, and that mutations lead to small changes in trait value. Then, traditionally, the evolutionary dynamics is studied in the limit of vanishing mutational step sizes. In the present approach, small but non-negli...
May 29, 2004
Well protected human and laboratory animal populations with abundant resources are evolutionary unprecedented, and their survival far beyond reproductive age may be a byproduct rather than tool of evolution. Physical approach, which takes advantage of their extensively quantified mortality, establishes that its dominant fraction yields the exact law, and suggests its unusual mechanism. The law is universal for all animals, from yeast to humans, despite their drastically diffe...