May 20, 1999
Similar papers 2
October 30, 1997
We report associated high resolution transmission electron microscopy (HRTEM) and transport measurements on a series of isolated multiwalled carbon nanotubes. HRTEM observations, by revealing relevant structural features of the tubes, shed some light on the variety of observed transport behaviors, from semiconducting to quasi-metallic type. Non Ohmic behavior is observed for certain samples which exhibit "bamboo like" structural defects. The resistance of the most conducting ...
February 27, 2002
Strain rate and temperature dependence of the tensile strength of single-walled carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the mod...
January 20, 2016
We study the collapsing and subsequent spontaneous twisting of a carbon nanotube by in-situ transmission electron microscopy. A custom-sized nanotube is first created in the microscope by selectively extracting shells from a parent multi-wall tube. The few-wall, large-diameter daughter nanotube is driven to collapse via mechanical stimulation, after which the ribbon-like collapsed tube spontaneously twists along its long axis. In-situ diffraction experiments fully characteriz...
April 6, 1999
We have calculated the effects of structural distortions of armchair carbon nanotubes on their electrical transport properties. We found that the bending of the nanotubes decreases their transmission function in certain energy ranges and leads to an increased electrical resistance. Electronic structure calculations show that these energy ranges contain localized states with significant $\sigma$-$\pi$ hybridization resulting from the increased curvature produced by bending. Ou...
May 6, 2003
We use an Atomic Force Microscope (AFM) tip to locally probe the electronic properties of semiconducting carbon nanotube transistors. A gold-coated AFM tip serves as a voltage or current probe in three-probe measurement setup. Using the tip as a movable current probe, we investigate the scaling of the device properties with channel length. Using the tip as a voltage probe, we study the properties of the contacts. We find that Au makes an excellent contact in the p-region, wit...
December 17, 2010
Applications based on Single Walled Carbon Nanotube (SWNT) are good example of the great need to continuously develop metrology methods in the field of nanotechnology. Contact and interface properties are key parameters that determine the efficiency of SWNT functionalized nanomaterials and nanodevices. In this work we have taken advantage of a good control of the SWNT growth processes at an atomic force microscope (AFM) tip apex and the use of a low noise (1E-13 m/rtHz) AFM t...
May 30, 2000
Quantum transport properties of intermolecular nanotube contacts are investigated. We find that atomic structure in the contact region plays important roles and resistance of contacts varies strongly with geometry and nanotube chirality. Nanotube end-end contacts have low resistance and show negative differential resistance (NDR) behavior. Contact resistance can be dramatically decreased by exerting small pressure/force between the tubes if the contact is commensurate. Signif...
December 19, 2007
Bending-mode vibrations of carbon nanotube resonator devices were mechanically detected in air at atmospheric pressure by means of a novel scanning force microscopy method. The fundamental and higher order bending eigenmodes were imaged at up to 3.1GHz with sub-nanometer resolution in vibration amplitude. The resonance frequency and the eigenmode shape of multi-wall nanotubes are consistent with the elastic beam theory for a doubly clamped beam. For single-wall nanotubes, how...
September 7, 2024
The electrical characteristics of a carbon nanotube can be significantly modified by applying elastic strain. This study focuses on exploring this phenomenon in a single-walled carbon nanotube (SWNT) using tight-binding transport calculations. The results indicate that, under specific strains, an armchair SWNT can act as a filter, separating the two valley electrons K and Kp. Notably, when subjected to deformation, the SWNT exhibits intriguing behaviors, including a quantized...
November 15, 2003
We report here on electrical measurements on individual multi-walled carbon nanotubes (MWNTs) that show that the presence or movement of impurities or defects in the carbon nanotube can radically change its low temperature transport characteristics. The low temperature conductance can either decrease monotonically with decreasing temperature, or show a sudden increase at very low temperatures, sometimes in the same sample at different times. This unusual behavior of the tempe...