December 2, 1999
If high temperature cuprate superconductivity is due to electronic correlations, then the energy difference between the normal and superconducting states can be expressed in terms of the occupied part of the single particle spectral function. The latter can, in principle, be determined from angle resolved photoemission (ARPES) data. As a consequence, the energy gain driving the development of the superconducting state is intimately related to the dramatic changes in the photoemission lineshape when going below Tc. These points are illustrated in the context of the "mode" model used to fit ARPES data in the normal and superconducting states, where the question of kinetic energy versus potential energy driven superconductivity is explored in detail. We use our findings to comment on the relation of ARPES data to the condensation energy, and to various other experimental data. In particular, our results suggest that the nature of the superconducting transition is strongly related to how anomalous (non Fermi liquid like) the normal state spectral function is, and as such, is dependent upon the doping level.
Similar papers 1
October 9, 2005
A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to ...
March 24, 2000
The condensation energy can be shown to be a moment of the change in the occupied part of the spectral function when going from the normal to the superconducting state. As a consequence, there is a one to one correspondence between the energy gain associated with forming the superconducting ground state, and the dramatic changes seen in angle resolved photoemission spectra. Some implications this observation has are offered.
August 27, 2002
This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-...
February 15, 2000
The angle-resolved photoemission (ARPES) technique has been developed rapidly over the last decay, accompanied by the improvement of energy and momentum resolutions. This technique has been established as the most powerful tool to investigate the high Tc cuprate superconductors. We review recent ARPES data on the cuprates from a theoretical point of view, with emphasis on the systematic evolution of the spectral weight near the momentum (pi,0) from insulator to overdoped syst...
April 11, 2006
This treatise reviews latest results obtained from angle-resolved photoemission spectroscopy (ARPES) on cuprate superconductors, with a special focus on the electron-phonon interaction. What has emerged is rich information about the anomalous electron-phonon interaction well beyond the traditional views of the subject. It exhibits strong doping, momentum and phonon symmetry dependence, and shows complex interplay with the strong electron-electron interaction in these material...
April 13, 2011
The normal state single particle spectral function of the high temperature superconducting cuprates, measured by the angle resolved photoelectron spectroscopy (ARPES), has been considered both anomalous and crucial to understand. Here we show that an unprecedentedly detailed description of the data is provided by a spectral function arising from the Extremely Correlated Fermi Liquid state of the t-J model proposed recently by Shastry. The description encompasses both laser an...
January 20, 2022
In conventional superconductors, the electron-phonon coupling plays a dominant role in pairing the electrons and generating superconductivity. In high temperature cuprate superconductors, the existence of the electron coupling with phonons and other boson modes and its role in producing high temperature superconductivity remain unclear. The evidence of the electron-boson coupling mainly comes from the angle-resolved photoemission (ARPES) observations of the ~70meV nodal dispe...
July 3, 2001
We review our angle-resolved photoemission spectroscopy (ARPES) results on different layered oxide superconductors, and on their insulating parent compounds. The low energy excitations are discussed with emphasis on some of the most recent issues, such as the Fermi surface and remnant Fermi surface, the pseudogap and d-wave-like dispersion, and lastly the signatures in the ARPES spectra of multiple electronic components, many body effects, and the superfluid density. We will ...
March 29, 2018
In the course of seeking the microscopic mechanism of superconductivity in cuprate high temperature superconductors, the pseudogap phase\textemdash the very abnormal 'normal' state on the hole-doped side\textemdash has proven to be as big of a quandary as superconductivity itself. Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for assessing the momentum-dependent phenomenology of the pseudogap, and recent technological developments have permitted a more ...
October 11, 2006
By performing high resolution angle resolved photoemission spectroscopy (ARPES) experiments on four different families of p-type cuprates, over an energy range much bigger than investigated before, we report the discovery of a universal high energy anomaly in the spectral function. This anomaly is characterized by the presence of two new high energy scales $E_1= 0.35-0.45$eV and $E_2=0.8-0.9$eV and the pinning of the main ARPES spectral function along the boundary of a diamon...