December 2, 1999
Similar papers 2
September 19, 2002
We review angle resolved photoemission spectroscopy (ARPES) results on the high Tc superconductors, focusing primarily on results obtained on the quasi-two dimensional cuprate Bi2Sr2CaCu2O8 and its single layer counterpart Bi2Sr2CuO6. The topics treated include the basics of photoemission and methodologies for analyzing spectra, normal state electronic structure including the Fermi surface, the superconducting energy gap, the normal state pseudogap, and the electron self-ener...
February 17, 2003
We review the field of high temperature cuprate superconductors, with an emphasis on the nature of their electronic properties. After a general overview of experiment and theory, we concentrate on recent results obtained by angle resolved photoemission, inelastic neutron scattering, and optical conductivity, along with various proposed explanations for these results. We conclude by reviewing efforts which attempt to identify the energy savings involved in the formation of the...
July 13, 2006
A universal high energy anomaly in the single particle spectral function is reported in three different families of high temperature superconductors by using angle-resolved photoemission spectroscopy. As we follow the dispersing peak of the spectral function from the Fermi energy to the valence band complex, we find dispersion anomalies marked by two distinctive high energy scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the dispersion splits into two ...
September 26, 2015
The loss of single-particle coherence going from the superconducting state to the normal state in underdoped cuprates is a dramatic effect that has yet to be understood. Here, we address this issue by performing angle resolved photoemission spectroscopy (ARPES) measurements in the presence of a transport current. We find that the loss of coherence is associated with the development of an onset in the resistance, in that well before the midpoint of the transition is reached, t...
March 2, 2015
The spectral energy gap is an important signature that defines states of quantum matter: insulators, density waves, and superconductors have very different gap structures. The momentum resolved nature of angle-resolved photoemission spectroscopy (ARPES) makes it a powerful tool to characterize spectral gaps. ARPES has been instrumental in establishing the anisotropic d-wave structure of the superconducting gap in high-transition temperature (Tc) cuprates, which is different f...
July 20, 2007
Anderson has recently proposed a theory of the strange metal state above Tc in the high Tc superconductors. [arXiv:cond-mat/0512471] It is based on the idea that the unusual transport properties and spectral functions are caused by the strong Mott- Hubbard interactions and can be computed by using the formal apparatus of Gutzwiller projection. In ref. 1 Anderson computed only the tunneling spectrum and the power-law exponent of the infrared conductivity. He had calculated the...
December 14, 2005
In this contribution we review recent ARPES results on the dressing of the charge carriers in high-temperature superconductors. After an introduction into the cuprates and their electronic structure, ARPES, the spectral function and the self-energy function in the normal state and in the superconducting state is discussed.. Finally results on the dressing of the charge carriers in the system Bi2Sr2caCu2O7 at the nodal and the antinodal point are presented.
December 5, 2017
The normal and pairing self-energies are the microscopic quantities which reflect and characterize the underlying interaction in superconductors. The momentum and frequency dependence of the self-energies, therefore, provides the experimental criteria which can single out the long sought-after pairing interaction among many proposed ideas. This line of research to pin down the pairing interaction for the cuprate superconductors has been carried out with some success by analyz...
July 21, 2008
Recently, angle-resolved photoemission spectroscopy (ARPES) has been used to highlight an anomalously large band renormalization at high binding energies in cuprate superconductors: the high energy 'waterfall' or high energy anomaly (HEA). This paper demonstrates, using a combination of new ARPES measurements and quantum Monte Carlo simulations, that the HEA is not simply the by-product of matrix element effects, but rather represents a cross-over from a quasiparticle band at...
March 3, 2012
We present an overview of angle-resolved photoemission spectroscopy (ARPES) studies of high-temperature cuprate superconductors aiming at elucidating the relationship between the superconductivity, the pseudogap, and the Fermi arc. ARPES studies of underdoped samples show a momentum dependence of the energy gap below Tc which deviates from a simple d-wave form, suggesting the coexistence of multiple energy scales in the superconducting state. Hence, two distinct energy scales...