April 11, 2005
Similar papers 3
September 6, 2024
Score-based diffusion methods provide a powerful strategy to solve image restoration tasks by flexibly combining a pre-trained foundational prior model with a likelihood function specified during test time. Such methods are predominantly derived from two stochastic processes: reversing Ornstein-Uhlenbeck, which underpins the celebrated denoising diffusion probabilistic models (DDPM) and denoising diffusion implicit models (DDIM), and the Langevin diffusion process. The soluti...
February 19, 2024
This paper introduces a Bayesian framework for image inversion by deriving a probabilistic counterpart to the regularization-by-denoising (RED) paradigm. It additionally implements a Monte Carlo algorithm specifically tailored for sampling from the resulting posterior distribution, based on an asymptotically exact data augmentation (AXDA). The proposed algorithm is an approximate instance of split Gibbs sampling (SGS) which embeds one Langevin Monte Carlo step. The proposed m...
December 18, 2019
Plug-and-play denoisers can be used to perform generic image restoration tasks independent of the degradation type. These methods build on the fact that the Maximum a Posteriori (MAP) optimization can be solved using smaller sub-problems, including a MAP denoising optimization. We present the first end-to-end approach to MAP estimation for image denoising using deep neural networks. We show that our method is guaranteed to minimize the MAP denoising objective, which is then u...
November 15, 2009
In many signal processing problems, it may be fruitful to represent the signal under study in a frame. If a probabilistic approach is adopted, it becomes then necessary to estimate the hyper-parameters characterizing the probability distribution of the frame coefficients. This problem is difficult since in general the frame synthesis operator is not bijective. Consequently, the frame coefficients are not directly observable. This paper introduces a hierarchical Bayesian model...
September 22, 2018
We study active restoration of noise-corrupted images generated via the Gibbs probability of an Ising ferromagnet in external magnetic field. Ferromagnetism accounts for the prior expectation of data smoothness, i.e. a positive correlation between neighbouring pixels (Ising spins), while the magnetic field refers to the bias. The restoration is actively supervised by requesting the true values of certain pixels after a noisy observation. This additional information improves r...
October 20, 2017
In this paper, we consider Bayesian image denoising based on a Gaussian Markov random field (GMRF) model, for which we propose an new algorithm. Our method can solve Bayesian image denoising problems, including hyperparameter estimation, in $O(n)$-time, where $n$ is the number of pixels in a given image. From the perspective of the order of the computational time, this is a state-of-the-art algorithm for the present problem setting. Moreover, the results of our numerical expe...
March 31, 2004
In this work we propose a Bayesian framework for fully automated image fusion and their joint segmentation. More specifically, we consider the case where we have observed images of the same object through different image processes or through different spectral bands. The objective of this work is then to propose a coherent approach to combine these data sets and obtain a segmented image which can be considered as the fusion result of these observations. The proposed approach ...
May 27, 2020
When images are statistically described by a generative model we can use this information to develop optimum techniques for various image restoration problems as inpainting, super-resolution, image coloring, generative model inversion, etc. With the help of the generative model it is possible to formulate, in a natural way, these restoration problems as Statistical estimation problems. Our approach, by combining maximum a-posteriori probability with maximum likelihood estimat...
October 4, 2021
This paper presents a scalable approximate Bayesian method for image restoration using total variation (TV) priors. In contrast to most optimization methods based on maximum a posteriori estimation, we use the expectation propagation (EP) framework to approximate minimum mean squared error (MMSE) estimators and marginal (pixel-wise) variances, without resorting to Monte Carlo sampling. For the classical anisotropic TV-based prior, we also propose an iterative scheme to automa...
September 15, 2016
This paper discusses new methods for processing images in the photon-limited regime where the number of photons per pixel is binary. We present a new Bayesian denoising method for binary, single-photon images. Each pixel measurement is assumed to follow a Bernoulli distribution whose mean is related by a nonlinear function to the underlying intensity value to be recovered. Adopting a Bayesian approach, we assign the unknown intensity field a smoothness promoting spatial and p...