ID: gr-qc/0606032

Non-Singular Bouncing Universes in Loop Quantum Cosmology

June 7, 2006

View on ArXiv
Parampreet Singh, Kevin Vandersloot, G. V. Vereshchagin
General Relativity and Quant...
Astrophysics
High Energy Physics - Theory

Non-perturbative quantum geometric effects in Loop Quantum Cosmology predict a $\rho^2$ modification to the Friedmann equation at high energies. The quadratic term is negative definite and can lead to generic bounces when the matter energy density becomes equal to a critical value of the order of the Planck density. The non-singular bounce is achieved for arbitrary matter without violation of positive energy conditions. By performing a qualitative analysis we explore the nature of the bounce for inflationary and Cyclic model potentials. For the former we show that inflationary trajectories are attractors of the dynamics after the bounce implying that inflation can be harmoniously embedded in LQC. For the latter difficulties associated with singularities in cyclic models can be overcome. We show that non-singular cyclic models can be constructed with a small variation in the original Cyclic model potential by making it slightly positive in the regime where scalar field is negative.

Similar papers 1