August 28, 2021
It is generally expected that in a non-singular cosmological model a cyclic evolution is straightforward to obtain on introduction of a suitable choice of a scalar field with a negative potential or a negative cosmological constant which causes a recollapse at some time in the evolution. We present a counter example to this conventional wisdom. Working in the realm of loop cosmological models with non-perturbative quantum gravity modifications we show that a modified version ...
November 18, 2005
Loop quantum cosmology is an application of recent developments for a non-perturbative and background independent quantization of gravity to a cosmological setting. Characteristic properties of the quantization such as discreteness of spatial geometry entail physical consequences for the structure of classical singularities as well as the evolution of the very early universe. While the singularity issue in general requires one to use difference equations for a wave function o...
December 14, 2016
Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I revi...
July 31, 2009
We study the role of non-perturbative quantum gravity effects in the Ekpyrotic/Cyclic model using the effective framework of loop quantum cosmology in the presence of anisotropies. We show that quantum geometric modifications to the dynamical equations near the Planck scale as understood in the quantization of Bianchi-I spacetime in loop quantum cosmology lead to the resolution of classical singularity and result in a non-singular transition of the universe from the contracti...
December 2, 2014
We consider an isotropic and homogeneous universe in loop quantum cosmology. We assume that the matter content of the universe is dominated by dust matter in early time and a phantom matter at late time which constitutes the dark energy component. The quantum gravity modifications to the Friedmann equation in this model indicate that the classical big bang singularity and the future big rip singularity are resolved and are replaced by quantum bounce. It turns out that the big...
December 21, 2016
Alternative scenarios to the Big Bang singularity have been subject of intense research for several decades by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce around some minimal cosmological volume or by some early quantum phase. This latter scenario was devised a long time ago and referred as an "emergent universe" (in the sense that our universe emerged from a constant volume quantum phase). We show here that within an imp...
March 2, 2007
The detailed formulation for loop quantum cosmology (LQC) in the Bianchi I model with a massless scalar field was recently constructed. In this paper, its effective dynamics with the LQC discreteness corrections is studied and the equations of motion are analytically solved, showing that the big bang singularity is replaced by the big bounces, which take place up to three times, once in each diagonal direction, whenever each of the area scale factors approaches its critical v...
June 26, 2004
Recently the mechanism was found which allows avoidance of the cosmological singularity within the semi-classical formulation of Loop Quantum Gravity. Numerical studies show that the presence of self-interaction potential of the scalar field allows generation of initial conditions for successful slow-roll inflation. In this paper qualitative analysis of dynamical system, corresponding to cosmological equations of Loop Quantum Gravity is performed. The conclusion on singularit...
January 13, 2009
A well-motivated extension of higher order holonomy corrections in loop quantum cosmology (LQC) for the $k=0$ Friedmann-Robertson-Walker model is investigated at the level of heuristic effective dynamics. It reveals that the quantum bounce is generic, regardless of the order of corrections, and the matter density remains finite, bounded from above by an upper bound in the regime of the Planckian density, even if all orders of corrections are included. This observation provide...
June 13, 2009
In this paper we study dynamics of the closed FRW model with holonomy corrections coming from loop quantum cosmology. We consider models with a scalar field and cosmological constant. In case of the models with cosmological constant and free scalar field, dynamics reduce to 2D system and analysis of solutions simplify. If only free scalar field is included then universe undergoes non-singular oscillations. For the model with cosmological constant, different behaviours are obt...