October 8, 2024
The QCD cross-over line in the temperature ($T$) -- baryo-chemical potential ($\mu_B$) plane has been computed by several lattice groups by calculating the chiral order parameter and its susceptibility at finite values of $\mu_B$. In this work we focus on the deconfinement aspect of the transition between hadronic and Quark Gluon Plasma (QGP) phases. We define the deconfinement temperature as the peak position of the static quark entropy ($S_Q(T,\mu_B)$) in $T$, which is base...
February 3, 2004
We study the deconfinement transition of $N_f=1$ QCD by the hybrid Monte Carlo algorithm with Wilson fermions. We calculate the Polyakov loop, its susceptibility and Binder cumulant and use the $\chi^2$ method to locate the phase transition point. Our results are similar to the previous results obtained by the multiboson algorithm.
September 12, 2022
We investigate the effective potential of the Polyakov loop, which is the order parameter for the deconfinement phase transition in finite temperature QCD. Our work is based on the Hamiltonian approach in Coulomb gauge where finite temperature $T$ is introduced by compactifying one space direction. We briefly review this approach and extend earlier work in the Yang-Mills sector by including dynamical quarks. In a first approximation, we follow the usual functional approach an...
September 10, 1998
We discuss the thermodynamics of two-colour QCD with four flavours of staggered quarks on 8^3x4 and 16^3x4 lattices. In our simulations we use the Naik action for the fermions and a (1,2) tree-level improved gauge action. We analyze the deconfinement and chiral phase transitions for four different quark masses (m=0.1,0.05,0.025,0.015). Contrary to three-colour QCD the peak in the Polyakov loop susceptibility decreases with decreasing quark mass. This reflects an early breakin...
October 30, 2012
With combined hopping parameter and strong coupling expansions, we calculate a dimensionally reduced Polyakov-loop effective theory valid for heavy quarks at nonzero temperature and arbitrary chemical potential. We numerically compute the critical endpoint of the deconfinement transition as a function of quark masses and number of flavours. We also investigate the applicability of the model to the low-T and high density region, specifically in terms of baryon condensation phe...
September 8, 2010
We investigate chiral and deconfinement transitions in the framework of the strong coupling lattice QCD for color SU(3) with one species of unrooted staggered fermion at finite temperature and quark chemical potential. We take account of the leading order Polyakov loop terms as well as the next-to-next-to-leading order (1/g^4) fermionic terms of the strong coupling expansion in the effective action. We investigate the Polyakov loop effects by comparing two approximation schem...
September 10, 2003
The order and the nature of the finite-temperature phase transition of QCD with two flavors of dynamical quarks is investigated. An analysis of the critical exponent of the specific heat is performed through finite-size and finite-mass scaling of various susceptibilities. Dual superconductivity of QCD vacuum is investigated using a disorder parameter, namely the v.e.v. of a monopole creation operator. Hybrid R simulations were run at lattice spatial sizes of $12^3$, $16^3$, $...
July 27, 2013
We explore the phase space spanned by the temperature and the chemical potential for 4-flavor lattice QCD using the Wilson-clover quark action. In order to determine the order of the phase transition, we apply finite size scaling analyses to gluonic and quark observables including plaquette, Polyakov loop and quark number density, and examine their susceptibility, skewness, kurtosis and Challa-Landau-Binder cumulant. Simulations were carried out on lattices of a temporal size...
November 22, 2010
We study the quark mass dependence of the QCD phase transition by an effective potential defined through the distribution function of observables. As a test of the method, we study the first order deconfinement phase transition in the heavy quark mass limit and its fate at lighter quark masses. We confirm that the distribution function for the plaquette has two peaks indicating that the phase transition is of first order in the heavy quark limit. We then study the quark mass ...
January 1, 2025
We revisit QCD with three mass-degenerate quark flavors at an imaginary isospin chemical potential set to 4 pi T/3. This choice corresponds to a special point in the parameter space, where the theory possesses an exact Z(3) center symmetry. Through a finite-size scaling analysis, we demonstrate that in this case the finite temperature QCD transition is of first order and entails singular behavior both in the Polyakov loop and in the quark condensate. Our results are based on ...