ID: hep-ph/0611364

A Model Behind the Standard Model

November 29, 2006

View on ArXiv
H. M. Chan, S. T. Tsou
High Energy Physics - Phenom...
High Energy Physics - Theory

In spite of its many successes, the Standard Model makes many empirical assumptions in the Higgs and fermion sectors for which a deeper theoretical basis is sought. Starting from the usual gauge symmetry $u(1) \times su(2) \times su(3)$ plus the 3 assumptions: (A) scalar fields as vielbeins in internal symmetry space \cite{framevec}, (B) the ``confinement picture'' of symmetry breaking \cite{tHooft,Banovici}, (C) generations as ``dual'' to colour \cite{genmixdsm}, we are led to a scheme which offers: (I) a geometrical significance to scalar fields, (II) a theoretical criterion on what scalar fields are to be introduced, (III) a partial explanation of why $su(2)$ appears broken while $su(3)$ confines, (IV) baryon-lepton number (B - L) conservation, (V) the standard electroweak structure, (VI) a 3-valued generation index for leptons and quarks, and (VII) a dynamical system with all the essential features of an earlier phenomenological model \cite{genmixdsm} which gave a good description of the known mass and mixing patterns of quarks and leptons including neutrino oscillations. There are other implications the consistency of which with experiment, however, has not yet been systematically explored. A possible outcome is a whole new branch of particle spectroscopy from $su(2)$ confinement, potentially as rich in details as that of hadrons from colour confinement, which will be accessible to experiment at high energy.

Similar papers 1