January 23, 2004
Similar papers 4
September 5, 2011
Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and Perturbative String Theory".
June 15, 2003
Introductory Notes in Bosonic String Theory and its Canonical Quantization.
January 22, 2012
This article is based on the opening lecture at the third quantum geometry and quantum gravity school sponsored by the European Science Foundation and held at Zakopane, Poland in March 2011. The goal of the lecture was to present a broad perspective on loop quantum gravity for young researchers. The first part is addressed to beginning students and the second to young researchers who are already working in quantum gravity.
August 18, 2017
Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct {\sl ab initio} quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum con...
May 19, 2006
This elementary introduction to string field theory highlights the features and the limitations of this approach to quantum gravity as it is currently understood. String field theory is a formulation of string theory as a field theory in space-time with an infinite number of massive fields. Although existing constructions of string field theory require expanding around a fixed choice of space-time background, the theory is in principle background-independent, in the sense tha...
August 15, 2000
After motivating why the study of asymptotically flat spaces is important in loop quantum gravity, we review the extension of the standard framework of this theory to the asymptotically flat sector based on the GNS construction. In particular, we provide a general procedure for constructing new Hilbert spaces for loop quantum gravity on non-compact spatial manifolds. States in these Hilbert spaces can be interpreted as describing fluctuations around fiducial fixed backgrounds...
April 8, 2024
In this article I am arguing in favour of the hypothesis that the origin of gauge and string dualities in general can be found in a higher-categorical interpretation of basic quantum mechanics. It is interesting to observe that the Galilei group has a non-trivial cohomology, while the Lorentz/Poincare group has trivial cohomology. When we constructed quantum mechanics, we noticed the non-trivial cohomology structure of the Galilei group and hence, we required for a proper qua...
September 21, 2007
In this brief note (written as a lengthy letter), we describe the construction of a representation for the Weyl-algebra underlying Loop Quantum Geometry constructed from a diffeomorphism variant state, which corresponds to a ''condensate'' of Loop Quantum Geometry, resembling a static spatial geometry. We present the kinematical GNS-representation and the gauge- and diffeomorphism invariant Hilbert space representation and show that the expectation values of the geometric ope...
December 12, 2013
We comment on structural properties of the algebras $\mathfrak{A}_{LQG/LQC}$ underlying loop quantum gravity and loop quantum cosmology, especially the representation theory, relating the appearance of the (dynamically induced) superselection structure ($\theta$-sectors) in loop quantum cosmology to recently proposed representations with non-degenerate background geometries in loop quantum gravity with Abelian structure group. To this end, we review and employ the concept of ...
October 12, 2011
This article provides some historical background and then reviews developments in string theory over the last twenty-five years or so. Both perturbative and non-perturbative approaches to string theory are surveyed and their impact on how we view quantum gravity is analysed.